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ABSTRACT

The present paper gives device representations, via multitape AFA,
for the femilies of languages which result from applying the A and the sub-

stitution operations to AFL. In particuler, if 9§ 1 and 9§, are multitape AFA

2

(i.e., certain families of multi-storage tape acceptors), then :Dl/\ :92 is

defined as the family of multitape acceptors which results when the tapes of

nl and \02 are coalesced, with the Ql o°

shown that the smallest full AFL containing £(,)A £(02) = (Llﬂ L2/Li in «(8,))

- tapes preceding those in 9 It is

is £(ﬂl/\ >‘)2). For each multitape AFA 0, a set 8" of "nested" mltitape

acceptors 1s defined. It is shown that if .ﬁl and §,_ are single-tape AFA, then

2
the family of languages obtained fram (91/\ Y] 2)N is the famlly of languages

obtailned by substituting the AFL defined by &8 5 into the AFL defined by ﬂl.
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*
MULTITAPE AFA

INTRODUCTION

' In [5}-and (18], the notion of a family of one-way nondeterministic
devices was abstracted and studied extensively. A natural extension of a
device with a particular type of storage tape is a multitape (storage) device,
each tape of the same kind. For excmple, a pushdown acceptor can be extended
to a device with two pushdown tapes. - In most familiar cases-~counter, pushdown,
stack=--adding a second storage tape increases the power of the device to that of
a Turing acceptor. By suitable restrictions on multitape devices, familles can
be obtained so that the associated languages, as, for example, the one-way
nondeterministic list-storage languages {8], do not include all recursively
enumerable sets. The purpose of this paper 1s to abstract the notion of an
"abstract family of multitape acceptors" (abbreviated "multitape AFA"), each
storage tape not necessarily of the same kind, and examine the family of
assoclated languages.

Our interest in multitape AFA originally arose from studying various
cperations upon familles of languages. We were interested in the operations of
A and substitution among families of languages, these operations appearing,
sometimes in disguised form, in a number of papers (7, 8, 11, 12, 13, 15, 16,

20, 21]. (1f £, and £, are families of languages, then LA £2 =

*Research sponsored in part by the Air Farce Cambridge Research laboratories,
Office of Aerospace Research, USAF, under contract F1962867C0008, and by the
Air Force Office of Scientific Research, Office of Aerospace Research, USAF,
under AFOSR Grant No. AF-AFOSR-1203-6TA.
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(Ll n Lz/each L, in -Ci].) Now certain families of langusges are

representable by single-tape AFA (see [5]). For these families, we were
interested in device representations for the families obtained by the A and
swbstitution operations. The main results of this document show that multitape
AFA provide such representations.

The paper itself is divided into four sections and an appendix. Section 1
introduces the notion of e multitape AFA. It is shown (Lemma 1.1) that for
each multitape AFA there exists a single-tape AFA, equivalent fram the point
of view of sets accepted.

Section 2 introduces the operation of A between multitape AFA and
discusses the operation of A between AFL. (AFL (5] are families of sets of
words with certain properties and are an abstraction of many of the formal
languages discussed in computer science.) Roughly speaking, if &  and §_ are

1 2

multitape AFA, then ﬂll\ 02 is the multitape AFA resulting when the tapes of

ol and n2 are coalesced, with the 01

operation A between multitape AFA is then used to provide a rultitape AFA

=tapes preceding those in § o The

characterization of the smallest AFL containing £ .A ... A .Sn, each £ 4 &n AFL,

1
in terms of an AFA defining the £ 1 (Theorem 2.1). A characterization of an
AFL being closed under intersection is given in terms of the existence of a
certain kind of multitape AFA (Theorem 2.3).

Section 3 is concerned with multitape transducers, i.e., devices obtained
by adding an output tape to a multitape acceptor. Connections between multi-

tape transducers, composition of single-tape transducers, and A are then

found.
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Section 4 deals with '"nested" multitape AFA. These are collections of
multitape acceptors, each acceptor changing at most one storage tape at a
time, and all tapes to the right of the cianged one empty. The main result

(Theorem 4.2) here is that if 9, and 4, are single-tape AFA then the AFL

2

glven Ly the nested acceptors of QlA ﬁa is the family obtained by substituting

the AFL defined by 8. into the AFL defined by 0 In demonstrating this

2 1¢
result, a technicel lemma (Lemaa 4.3) is used whose proof is so extensive that
it 1s relegated to an appendix.

Numerous applications of the theory are given throughout to AFL and AFA
of interest in computer science. For example, it is shown in Section 2 that
a language (L) can be recognized in quasi-realtime by a multitape Turing acceptor
if and only if L can be recognized in quaslerealtime by a multi-pushdown tape
acceptor if and only if L igs the e-free homomorphic image of the finite inter=-
section of context~free lanpuages. The applications given show that multitape
AFA provide greater insight into families of languages of concern to automata

and formal language theorists.

Section 1. Preliminaries

As mentioned in the introduction, our aim in this parcr is to study
multitape (storage) devices, each tape not necessarily of the same kind. 1In

addition, we shall examine the families of languages associated with these
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devices. In this section we formalize the kind of multitepe device with which
we are concerned, and present some examples.

In (5] we formulated the notion of an AFA (abstract family of acceptors)
and established a basic connection between it and certain famllies of languages.
We shall define the multitape acceptors of interest to us by modifying the
notion of an AFA. In particular, we introduce the notion of an "AFA-schema,"

a construct which represents a type of auxillary storage tape. We then define
a multitape AFA as a family of devices, each of which has only a finite number
of preassigned AFA-schema.

Definition. An AFA-schema is a 4 tuple ([,I,f,g), with the following

properties:
(a) T and I are abstract sets, with [ and I nonempty.
* *
(b) £ 1s a function from(l) '™ X I into I U{g).
* *
(¢) g is e function from ' into the finite subsets of I' such that
g(e) = (e}, and € 1s in g(y) if and only if vy = €.
*(2)
(d) For each v in g(I') there is an element 1 in I satisfying
d Y
£(v’, ly) =y’ for all ¥’ such that g(y’) contains y.
(e) For each u in I, there exists a finite set F&= [ with the following
* *
property: If )& T, y is inT,, and £(y,u) ##, then f(y,u) is in (rur);
*
that 1s, for each v in ', each symbol occurring in f(y,u) either occurs in y

or is in T .
u

*
(l)For each abstract set E, E 1is the set of all finitg strings of symbols from
E, including the empty string €. Each element of E° 1is called a word in E.

(2)For each set A, g(A) = U g(y).
Yy in A
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Intuitively, an AFA-schema is a type of auxiliary storage. [ is the set
of "auxiliary" symbols (:.e., the set of symbols going into the auxiliary
storage). I is the set of "instructions," g is the "storage" information
function wvhich interprets the auxliliary storage configuration, and f is the
"storage transformation" function which produces a new auxiliary storage
configuration. The reader is referred to (5] for further details.

Definition. A multitape AFA is an ordered pair (Q,8), or ® when 0 is under-

stood, with the following properties:
(1) O is a 5-tuple (X,Z,d,<,u), where
(a) @ is a nonempty index set and < is a simple order on 0(3).

(b) u is a function on @ such that for each & in @, u(a) =

(&)

o (Fa,Ia,fd,ga) is an AFA-schenal
(¢) K and I are infinite abstract sets.

(2) #® is the family of all 6-tuples D = (K 6,qo,F,u), called nulti-

1257

tape acceptors, where

(a) v = (al, " °‘k)’ k finite, &, in @ for each i, and @< a, . for

3 . .7 8

lsic<k,

(b) X, and Z, are finite subsets of K and Z, resp., F is a subset of

1 1 ’

K., and g is in K

1 1’

(3)That is, < is transitive, antireflexive, and dichotomous.

(h)Thus the component y could be replaced in Q by the more cumbersome
symbolism [xa} o in Q*
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(c) & is a function from K, X (ZUle)) x (T X ... X ruk) into the

e |

finite subsets of K, X (Ia X oo X I_) such that

1 %

Gy =[(Yl, wrelah yk)/6(q,a,({l, s yk));‘¢ for some q and a)

1

is finite.

As in an AFA, K 1s the set of all possible "states" and £ is the set of
all possible inputs. @ 1s an index set and ;, assigns a type of suxiliary
storage to each & in @, Each multitape acceptor has a finite number of tapes,
wvith 4 and v indicating their types. The order in which a device displays its
tapes does not really affect its action. The role of < is Just to impose some
order.

In general, for each @ in O and each vy in ga(I‘;) , there may be more than
one element ua,y (possibly an infinite number) in I o satisfying fa(y',ua,Y) =y’
for all y’ such that ga(y') contains y. Now we shall frequently be defining ac-
ceptors with special properties, Since acceptors are finitely described, we shall
need a specific such ua’Y for each & and each y. Hence we have the following.
Notation. For each @ in @ and each ¥ in ga(l";), 1(a,y) denotes a specific
element in I satisfying fa(y', 1(a,y)) =y’ for all y’ such that ga(y') con-
tains y. In case y = ¢, 1(x,€) is abbreviated 1,

The movement of a multitape acceptor is now described, in analogy with
that of an acceptor in an AFA.

Definition. ILet D = (Kl,Z‘.l,é,qo,F,v), v = (°‘1’ e °‘k)' be a multitape

acceptor. A configuration C is a (k+2)-tuple C = (q,w, (Yl, - yk) ), vhere

* *
q is in Kl’ wis in Z‘.l, and each Yy is in I‘ai.
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Notation. Let |-— be the relatlon on configurations defined as follows:
For a in ZlU[e] and v in ZI, (q,aw,(yl, A Yk))}-— (q', w,(yi, bi i) y}:)) if
there exist Vl’ ceey Vk’ each \71 in gai(yi), such thet (q’, (W coey u.k)) is
in 6(q_,a,(?l, cer, Vk)) and fai(yi,ui)= Yj" for each i. For each 120 iet }-l
be the relation on configurations defined by induction as follows: C l—o—C for
each C and ¢ M2 ¢/ 4f there exists C” such that ¢ F2 ¢’ and C” —C’'. Let
}—t be the transitive, reflexive extension of }—, i.e., C iic’ if ¢ ¢’
for some n20.

As usual, the sbove relations are written ‘T)-’ }-%, and {% if D is to be
emphasized.

For each multitape AFA ® and each v = (ozl, 00§ ak), k21, we shall be
interested in those multitape acceptors with auxiliary storage tapes v.
Hence we have
Notation. For each multitape AFA 9 and each v, let ﬁu be the family of all
D= (Kl,Zl,é,qo,F,v) in 8.

We now introduce the families of sets of words defined by the previous
fanilies of acceptors.
Notation. For each D = (Kl,zl,5,qo,F,v) in 9, let

1{D) = [w/(qo,w,(e, i iy €)) }%(q,e,(e, +ee, €)) for some q in F).
let £(8) = (L(D)/D in #} and for each v, £(9v) = (L(D)/D in ﬁv].

As in the acceptors discussed in [5], so we frequently shall be interested
in those multitepe acceptors with a bounded number of consecutive e-moves.

Definition. D in 8 is quasi-realtime if there exists an integer m20 such that

for all configurations C = (q,e,(Yl, coey Yk)) and ¢’ = (q’,¢, (Y;_’ ceey YII{)))
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C = ¢’ implies nsm, Let
£t(nv) = ((D)/D in 8 1is quasi-realtime)

and  LP(Q)

1t vy = (01; coey dk), Vy =(Bl, seey BL)’ A= (al, o ak]’ B =

{Bl, «e+y B,) and ASB, then ﬂ"l cen be "embedded" in &Dz in the following
sense: Each element D of s"l may be identified with the multitape acceptor
D’ (in h Jwhich consists of (i) the tapes of D, and (ii) the tapes in B-A,
with € or21 them, acting under the identity instruction. (D’ behaves "essenti-

{(L(D)/D in & is quasi-realtime].

ally" the same as D, is quasi-realtime if and only if D is, and is such that

LD*) = D)) Thus I, ) S £(9, ) ana st(sul) < ‘t(‘uz)'

The most mportant multitape AFA are those having just one tape.
Definition. If @ = {a), then (Q,8) is said to be a single-tape AFA.

We may identify each single-tape AFA with an AFA as defined in [5]. In
particular, if (Q,9) is a single-tape AFA, then we may regard Q as

(K,Z‘.,I"a, Ia’fa’ga) and § as the set of all D of the form (Kl,Z‘.l,é,po,F).

If (0,0) is a finite-tape AFA, i.e., @ = [al, A ak} for some finite

k, with o, <a, .

d, v =(al, S ak)

v

for each i, then as noted above, § may be identified with

We first show that multitape AFA are equivalent (from the point of view
of sets accepted) to single-tape AFA. Thus, as families of recognition
devices, multitape AFA are no more powerful than single-tape AFA. However, as
we shall see, multitnape acceptors are useful in representing, in a "natural"
way, the languages obtained from families of languages by certain operations.

Lemma 1.1.if (Q,9) is a multitape AFA, then there exists a single-tape AFA
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(3,F) such that £()= £(8) ana L¥@F)= £¥(9).

Proof. Let Q = (K,%,2,<,u) and let § be a new symbol not in U TI.. For each
ain

v = (al, selels o&{) and each (ul, ey u.k) in Ialx A Iak, let o(v) and )
(vy(w, «e0y W) be new symools. Letf'z: it;ll aFaU{§]U(c(v)/a.u v} and

I-= [:;(u,(u.l, abos u.k))/a]_l '7(u,(ul, 55 uk))]U{ry(v)/aD. viulel.
and v = (al, - Ok), let

* *
FOI‘ (Yl, eooy Yk) in ra X ) X1

= 1 %

Blo(»)v5 v v E) = c(v)ieal(vlﬁ gak(vk)ﬁ.

let g(e) = (e}, For v = (al, ceey Of.k), (ul, s o5 u.k) In I, X «.u X Iak,
i

* * - =
(xl, Ay )ﬁ() in FalK SEREX I"ay, and x, = fai(xi’ui)’ let £(e,0(v))

+] =, =
) 5 l, f(J’(’))gk+l,€) = ¢, f(c,e) = ¢, and

= g(v)3

T(o(v)5x,E Sy o0y (iyy eeer w))) = (0TS .0e RESD)

SRS e s ol ey 1S e R
We first show that for 1 = (X,%,0,I,T,z), (7,9) is a single-tape AFA. Then we
consider £(§) and £(F).

Intuitively, O is the single-tape AFA obtained by taking the tapes of
each finlte set of tapes and placing them on one tape, in the obvious order,
with appropriate separators. Formally, we firs: note the following (for
= (0, eeny ak)):

(1) f(‘f(u)gxl ves §xks, 'T(D}(l(alle)"" ) l(ak)Yk))))' U(U)le '--gxkg
for all r_y(u)ixl Exké such that E(c(u)’;xl §x.k€.) contains a(u)%yl - .§Yk§.
= ¥ -

(2) For all x, T(x,7{v)) is in {5(v),5)" U(P) and F(x,c) 1is in (¢, @),

For each (ul, el u.k) 2a Iy ¥ e ¥ Iy and 1, .., ;‘uk as in (e) of the

1 % Y
r"(U;(uli Y] U-k>)

definition of an AFA-schema, = 1‘u Wls(v),E).
k i

1

(5)P\mctional values are always to be ¢ unless otherwlise stated.
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Hence (I,I,f,g) 1s an AFA-schema.
Suppose that D = (Kl, 21,6 ,qo,F,u) is an arbitrary multitape acceptor
in 8. Let E‘o and r_ be new symbols in K and b= (KlU{a:o,ro], 21,5-,60, {ro} )s
vhere § is defined as follows:
(3) (q',ry(u,(ul, o o uk))) is in 5'(q_,a.,c(v)§vl oo By,3) Af
(q',(ul, ooy w)) ds I 5(gya,(vy, «eey V).
(&) (ro,e) is in g(p,e,c(u)ﬁkﬂ) if p is in F.
(5) B(Tyee) = ({a,o(v))).
Clearly L(D) = L(D) and D 1s quasi-realtime if D is quasi-realtime. Thus
£(8) € £(F) ana £Y(0) = £4(F).
Clearly L(D) = L(D) and D 1s quasi-realtime. Thus £() < £(7)and £(0) < £¥(%).
Now let D = (Ky52y,6,9,F) be in §. Note that many different s(v) might
appear in D. Let
s = (v/(qa’,4(v)) in 6(q,a,e) for some q and al.
We may assume that if (q',o(ul)§u.l§ u.k§) is in 6(q,a,c(v2)§yl §Yk§ )s

*
then v, = v,= (al, 5[5 25 ak), vhere u, is in I, and y, is in gai(I‘a )s 2 & 1<K,

1 4
and vy is in S. (For no other type of rule can be applied in the f— relation.)

Since S is finite, there exists some Yy =(al, oy an) such that if v 1s in S,

thenv = (A, , «vsy, @ )forsomeISJl<...<.j <n, let k' =

Jp Iy k
K X (Ule)). Let D' = (K',Zl,6',(qo,e), FX(el, vo), vhere 6 ' is defined as

follows (for arbitrary v = (aJ yoeees Oy )):
1 k
(6) ((qlpe):(]ul: seey la )) is in 6'(((1’€))a)(€’ ceey €)) if (ql)e) is
n
in 6(q,a,¢€).
(7) ((a'e), (1, » «oep 1, N dn 6'((qv),8,(e, ...y €)) if (q'€) 15 1n

Aoy a,n (5D, ’
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(8) ((q’,v),(lal, ceer 1y )) 15 4n 6((qu€),8,(c, ..oy €)) if
n

(a',~7(v)) is in 6(q,a,¢€).
(9) ((a'yv),(uy, «vvy w)) 15 10 8 ((quv),8, (g, «ovp ¥.)) AF

, . *
(q',q(u,(ul, o uk))) is in 6(q_,e.,n(u)syl syk§) where v, in I‘o!:l for each
i

i, u{ = v and yi =v, for i in [Jl, o8 §3 Jk], and u{ = lai and y;. =¢ for 1
not in [Jl, -2 Jk].
It is readily seen that L(D’) = L(D) and D’ is quasi-realtime if D is quasi-
realtime. Thus £(9)=L(¥) and .Ct(ﬁ) & .L‘t(ﬂ—), vhence equality in both cases.
Since each 0D may be considered a multitape AFA, we have
Corollary. If (Q0,8) is a multitape AFA, thon for each : there exists a
single-tape AFA (3,9) such that L(R)= L(QD) and LY&) = £t(£>v).
Using Iemma 1.1, we are able to apply results of [5] to multitape AFA.
Since we are dealing with acceptors, we ure naturally interested in
various families of sets of words. We recall some terminology from
(7,51

Definition. A family of languages is pair [%,£), or £ when I is understood,

where
(1) £ is an infinite set of symbols,
(2) for each L in £ there 1o a riugve set Z,5C such that LCZI, and
(3) L 70 for some L in £.

The families of languages we are most concerned with are now given.

Definition. An abstract family of languages (abbreviated AFL) is a family
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(6)
of languages closed under the operations of U, *, +, €-free hanomorphism( 7),

inverse homomorphism, and intersection with regular sets. An AFL 1is said to
be full if it is closed under arbitrary homomorphism.

It wvas shown in [5) that for each single=-tape AFA 9, tt(ﬂ) and £ are
AFL conteining (e}, with £(0) being full (and conversely, for each AFL £
containing {€}, resp. full AFL £, there exists a single-tape AFA A such that
.i:t(ﬂ) = L,resp. £(8) € £). From Lemma 1.1 we therefore get
Theorem 1.1. For each multitape AFA &, £t(£) and £(9) are AFL containing (e},
with £(8) being full. Furthermore, for each v, .ct(sv) and £(0 ) are AFL
containing (e}, with S(Qv) being full.

One of the operations upon families of languages in whica we shall be
interested is intersection. This leads to
Notation. For families of languages Ll, coey .Cn let

IA o nE = {Llﬂ oo ] Ln/each L msi).

i
We now introduce some notation to describe certain families of
languages related to a given family of languages.

Notation. For each family of languages { let

6 *
©)or eacn set of words A, A= 0 At anaa" = T A, shere al'Y = ALy,
121, and A= (e]. i=1 1=0

(7) ¥ *
A mapping h from Iy into I, is a homamorphism if h(xy) = h(x)h(y) for all

x end y in If h(x) = ¢ implies x=€, then h 1is said to be c-frec,
The mapping 1 of eubsets of I, into subsets of r.l defined by h=I{Y)= {x/hf) in Y]

for all YQZ is called an inverse homomorphism,
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(a) F(£) be the smallest AFL containing £.

(v) §(£) be the smallest full AFL containing £.

(¢) ML) = (h(L)/L in £, h an e-free homomorphism}.

(d) ﬁ(S) = {h(L)/L in £, h an arbitrary homomorphism}.

(e) F~(£) be the smallest AFL containing £ and closed under intersection.

A
() ﬁq(£) be the smallest full AFL containing £ and closed under

intersection.

inf) = U(LA...AL) £,=¢8

(g) AE = (Ll'\ il Ln/nzl, each L & !
n2

i
for each i.

Clearly the families in (a), (b), (e), and (f) exist.

Finally, we summarize a number of AFL relations (some already known)
which are used extensively in the sequel.

Theorem 1.2. Let <, £l, o6y £n’ ££, . £x:1 be AFL.
~ A
(a) M(£)=7F(L).

(b) (LA e AL ) =F(EA ... AL ), and

A A A
A LR N ] A e 0o = e o @
1l(£l J:n) u(u(;:l/\ A .s:n)) /'(-cl/\ A .cn).

WEA e AN BEIA LA g ' '
(c) WLy DAHEIA ALY HEA AL ALIA L AL

and fs(sl/\ e AL A ﬁ(si AN S ﬁ(s:l/\ cee ALALIA LA J:n'l).
(a) .H(.i:l./\ PR .sn) = Jl(u(.cl) R A Jl(.ﬁn)),
(e) FA(L) = HAL) = F(AL), and
F.(2) = (A) = F(ar) = F(i(e)) = Hni(e)) = £ (B(e)).
Proof.(a) This equality is in [11],

(b) Tue first equality is ia [7] and the second follows from the first.
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(c) Let L, be in LA ... AL and L 1n£'/\...A£n'1. Let h, and h

T 2 1 1 2
be homomorphisms, and let L = hl(Ll) g ha(Le). Since £(X)NY = f[xﬂf"l(y)]

for arbitrary sets X and Y and an arbitrary function £, L = hl(Lln hilhz(La)).

' ‘ Boat ’ =1 _ ’
Since u(.s:l A eee A .s:m) and H(.sl A oo A £m) are A?*L, hy h2(L) = h3(L2) for
some homamorphism hs, e-free if h, is e-free, and some set Lé in Si A AL

Then L = hl(Lln h3(Lé)) = hlh3(h;1(Ll)ﬂ Lé). From (7], LA ... AL is closed

=1 2 ’ [}
under h ~. Thus L is in M(-cl/\ cer AL A J:l A e A .cm). If hy and h, are

! !
e-free, then hlh3 is e-free so that L is in 1‘(1'.1/\ ce NEASIA LA £).

(d) Clearly N(.Cl) = ﬁ[ﬁ(.ﬁl) J. Continuing by induction, suppose
) A A A A
M(J:l/\ ces A .i:n_l) = H[M(.r.l) A een A J(Ln_l) ], n22, Consider :rl(s:l/\ cee A £n).
A A A A
Obviously u(.cl/\ cee A .cn) S n[u(.cl) A eee A N(.cn)]. Furthermore,

A A

fdcey) A oo n e )) e Biliee) AL adiee, ) A dice )

A A A
ii[li(xlA B A 'cn-l) A Ji(.cn) ]l, by induction,
S HHEA o AL AL )], by (e,
A
=HEN AL,
;i NH(E,) A .u. A (S
Thus 31(.!!1/\ cee A £n) [3( l) G ( n)]'
(e) Consider the first sequence of equalities. Clearly H(AL) = F(AL)
= Fn(-ﬁ). To get equality, it suffices to show that ¥(AL) is closed under
intersection. To this end, note that

WAL)A H(AL)

UHEA oo ASTAUHEAN ... ASL)
m>1 m21

U (MEAN AL AUEA ... ALY
m, nx1 e n
c U HEA...AE]
m, n21
< W(AL).

m+n »by (c),
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A A A
For the second sequence of equalities, we have ﬁq(£)= HAL) = F(AL).
A A A A A /
Replacing £ by (L), we have ?q(ll(l‘.)) = ﬂ(/\u(s)) = F(Al(£)). From (a), we

readily get ﬁ(/\.ﬁ) = ﬁ(/\”(.ﬁ)) Hence the result.

Corollary. (a) If n=2 and £15 «++, L are AFL, then
31[11(.1:1/\ o e sn_l) A= u(sl/\ s el £n).

(b) Tf a2 and £., ... £ are full AFL, then

l’
e £]=MEA oo AL)
][[ (£1A * 00 A £n-l) A n] bt ( l o0 0 n [d

Proof. It suffices to show (a), a similar argument holding for (b). Since

£/\oau/\£

3 ’.Jl(.tl/\ 2 0k ARE

n=1 n-l)’

! S H[U e A
J(.El/\ oo A .cn) M (.cl/\ L

n l) A 'sn]'

On the other hand,

i
JI[J((.ﬁlA > cn O .tn_l) A .cn] Jl[Jl(.tl/\ SR ,s:n_l) A (.i:n)]

n

“[”(‘:1" 20 A £n)], by (¢) of Theorem 1.2,

u(.s:l/\ ees A .cn).

Combining, we ;ret the desired equality.

Section 2. Multitape AFA and Intersection

In this section we represent the smallest AFL containing the intersection
of languages from a finite sequence of AFL in terms of a multitape AFA. In
particular, we define ﬂl A som A ﬂn for the sequence of multitape AFA
17 e O (The operator A for multitape AFA plays a basic role throughout
the paper and is analogous to the cross product operation X in set theory.) We
then show that N(£t(".)l) A A .\:t(nn)) = £t(81 Ao AB ) and
HE(0)) A veu A S0 ) = £(0) A .. A 0).
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We now introduce the operation A for multitape AFA.
Notation. Let &3 be an abstract set, < a simple order on £ , and
{(QB,QB)/a in A} a family of multitape AFA, with Qq= (K’z’aa’<s’“s) for

each B. Then /\x‘)rs is the multitape AFA (Q,Aﬂﬁ), vhere 0 = (X,Z,Q,<,u) is
w V-4

defined as follows:
(1) a = U (an [3)),

B in &

(2) u(a,p) = “B(a) for each f in & and each @ in aB.

(3) (a,B) < (a’,8’) if and only if either B8 = g’ and a < a’, or s<‘[’a’.

B
If /4« is a finite set /2 = [Bl, ceey Bn] and <ub’ is the order on /7 as given,

then A8, is writtenas A 8 ord, A ...AQB .
s 1sisn P10 P2 n

Obviously the set of words accepted 1s independent of the order </ ,on &,
bl
Frequently A is a subset of the integers. In this case, unless stated
otherwise, <, is the natural order of the integers.

If the O_ are pairwise disjoint, then we may identify each (a,8) with a

34
and write @ as U GB. In the sequel, we shall alweys assume (without loss of
B in 8
generality) that the GB are pairwise disjoint.
For each multitape AFA (Q,8), 9 may be identified with A 8 .,

. @ inC
We now turn toward showing that £(Ol AR atg A ﬂn)= 11(.!!(:91) 3 i L(Qn))

and .c'“(@1 AeaAB ) n(.ct(sl) A wo. ALY8)). That is, the femily of those
sets accepted by at least one acceptor (quasi-realtime acceptor) in the

AFA S A ... A a‘)n coincides with the family of the homomorphic (e-free homomorphic)

1
images of the sets in £(0)) A ... A £(8 ) (.ct(nl) A wun A .s:t(\.on)). First

though, we need two lemmas.
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Lemma 2.1. For all multitape AFA . and 02,

EL
.!!(91) A -‘5(92) = J:(sl/\ 92)
t t t
and  £7(8,) A L7(8,) < £Y(B,A0,).
Droof. For each i, let 0, = (K,Z,0,,<,,u,) and let D, = (K;,%,,6,,9,,F;,v;)
be in 4., with v, =(a1, i 0By O’k) and 2 UE (Bl, e ep ﬁz). Let
= = = X >
vy (al, veey Ky By eees Bz)’ K3 K,X K, and F3 F) X F,
Let D3 = (Kg,):lﬂ 22,63, q3,F3,v3), where 53 is defined as follows:
(1) If a is in Z.N Ly (q',(ul, css, u.k)) is in Sl(q,a,(yl, cee yk))

1

and (p’,(l._ll, s oncly 1_12)) is in § p,a.,(yl'_, 0 5 Y;,))’ tet ((q',p"),

A
(UIJ seey Yoo 1-1-1: sy Eﬂ,)) be in 53((%P);31(Yl: ceey Yyo Yi) ceey Yé))-

(2) 1f (q',(ul, cee, u.k)) is in 6l(q,e,(yl, cery yk)), then for all
(v{s +ees ¥3) in GD2 and p in Ky let ((a',p), (v ooy Wy 1By,Yy)s +res1BpY;))
pe in ;‘3((%P),Q(Yly sy Yk’ Yi} seey Yé))-

(3) 1t (p’,(w!, -..,u})) is in & (p,€,(v4, ..+, ¥;)), then for all

;) L 2 1 L

(yl, 200y yk) in GDJ_ and all q in X; let ((q,p'),(l(al,yl?, ...,l(ak,'yk),ui,... , uz))
be in 63((q_,p),e,(yl, oo Yy y]'_, addy Y;,))

Clearly L(D3) = L(Dl) n L(D2) and D, is quasi-realtime if and only if

<
Dl and D2 are quasi-realtime. Hence the result.
Lemma 2.2, For all multitape AFA ﬂl and 92

& £ Bt
(a) (L (nl) AE (92)) =g (sl/\ 92)
- _ At t - ,
and  {b) 11(::(91) A .c(.nz)) = H(L (ol) AL (ne)) s(.ol/\ na).
Proof. For each i, let Q, = (K,Z,Oi,<i,u,i). Consider (a). By Lemma 2.1 and
%) t t,, = ot
Theorem 1.1, (L (nl) NE (92)) < UL (qlA na)] & (nl/\ 412).

To see the reverse containment let D = (Kl, Zl,S,qo,F,v) be quasi-realtime and in
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0y, with v = (al, ooy Qy Byy eeey By)y Qyy oeey 4 in G, and

Bps «es By tn 02. Let L = L{D). For each Q8 Y15 ++es Yy such that

F (5028, (vys ees %o ) >6°) and cach 1, 1% 1 2 K80, (vgs +ee vyag)))

let (q,a,(yl, csey Yk+2)’i) be a new element of I. Let 22 be the set of all

such (q,a, (Yl, o Yk+£)’i)' Clearly I, 1s finite. Let c be a new element

of . Let hl and h2 be the homomorphisms on Z;

by hl((q,a,(yl, cees Yyiy)r1)) = aif afec and is ¢ if a=¢, and he(a) =a if

and (Z‘.lU[c} )* resp. defined

a #c and h2(c) =¢. We shall show that there exist L, in -ﬁt(ﬂl) and L, in

te ) o = (9)
A € 2) such that L hehl(Llﬂ L2) and L, is e-limited on hl(Lln L2).

e
From this it will follow that hl(Llﬂ L2) is in l‘(-ﬂt(ﬂl) A £t(‘02) ), an AFL
containing (€} [T], thus that hahl(Llﬂ LE)) is in N(£t(ﬂl) A St(ﬂa)) [51.

For 1 = 1,2 let D, = (Kl,Za,éi,qo,F,vi), vhere v, = (al, 0 ak),
v, = (Bl, e Bz), and 61 is defined as follows: For each
(q_,a,(yl, et 3 Yk+2)’i) in Z,, let the elements of 6(q_,a,(yl, ceey Yk+z))
be simply ordered in some way. If (q',(ul, uk+£)) is the i-th member of
8(a, (s eeos Yyup))s let

81(a(ar,(vys ey Viip)sd)y (v oees v )) = (@', (uyy oeny w))))
LU N C O C PP CTRRRRPRL S P PR COEPRR PRI A0 Dol ( C P U N D)

Let L= L(Dl) and L= L(D2). Since §. and § . have no €-moves, L, is in £t(x()l)

i 2

t
and L, is in ¢ (.4)2). Clearly L < h2hl(Lln L2).

(B)For each set E, #(E) denotes the number of elements in it.

(9)A homomorphism h is e-limited on a set L if there exists =0 such that for
all w in L, if w = xyz and h(y) = €, then |y[<k.
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Consider the reverse containment. 1If € is in Llﬂ L2" then q, isin F
and € is in L. Suppose wfe is in LN L, vith |w| = n. Then

w = (pl’al’(yll’ ceey Yl(kﬂ’:))’ 'jl) see (pn’an’(ynl’ coey Yn(k*‘l))’ Jn)
for some Py, ..., P, in K8, ..oy @ in ZlU[e}, each (vyy) «oo) Yi(k+£)) in
Gy and 1< §, < f;(s(pi,ai,(yn, ceey Yi(w))))’ 1< i< n., For each i, let
(pi",(uil, e, ui(k+£)) be the J,-th element of 6(p;,8,,(Yy) «oes Yi(k*l/)))'
By definition of }— 61, and 8, 1t follows that q = p;,r = px"+l’ l<r<n,

and pr'1 is in F. Furthermore, there exists y,,, coa¥y(keg) Yoo cees
y2(k+£)’ ceor Yo(x+h) such that y,q = ... = Y1(kte) = e’y(i.+l)r =

fozr("’;tr
V(1) (o) T T3 Vi) Baem)) #0€ = T Ungem)r (i
l1£1<n, 1lsrs<i ILet Ppr”™ pr'1 and y(n+l) 1= e y(n+l)(k+£) = ¢, Then

= < <
. uir) and € far(ynr,unr) for 1< 1i<n, 1<rs<k, and

)) for

(pi}ai}(yill e 209 yi(k+£)))}-ﬁ (pi+l’€)(y(i+l)l’ sieey y(i+l)(k+l)))

for 1 < 1 <n, so that a a = hehl(w) is in L. Therefore hehl(l'in L2)= L.

l LN ]
Furthermore, if

h2hl((pr’ar’(yrl’ ey vr(k+z)))Jr) eNere (pr+s}ar+s’(v(r+s)1)'",Y(r+s)(k+z))’

then hl((pr’ Serall et (pr+s’ cee)) = cC and & = ... =&, =e€. Then
s+l
(B & (ppr +oos Yp(eat) T (Pragups © W (pagunyron s+ 2 ¥(rrarn)(rees) )
Since D 1s quasi-realtime, there exists an integer t such that for all
configurations C = (q_,e,(yl, crey Yk+2)) and ¢’ = (q',e,(yi, S Y1'<+z)) of D,

2 B c’ implies 1 < t. Hence s+l S t. Therefore h, is e-limited on hy (L0 L)

2
Consider (b). It was shown in [5] tlmt for any single-tape AFA 9, thus

A
for any rultitape AFA ? by the corollary to Lemma 1.1, £(9) = Jl(.tt(ﬂ)). Hence
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£(0y A D,) = Hs¥(e, A )
= 3u(s™(0,) A £%(0,))), by (a)
< H(z(8,) A £%(0,))
= Q(ﬁ(f.t(&l)) A Q(st(se))), by Theorem 1.2 (d),
= ﬁ(.c(ol) A £(8,)).

Theorem 2.1. For all multitape AFA & .

b L n
(a) WO A ... ALY ) =0 A ... A D)
A l L BN J n l LAY 2 n
t t
and (b)) H(E(8) A .o A 20)) = BEY D) A Lo A LB )) =20 A L A0 ).
Proof. For each i letQ, = (K,Z,01,<1,p.i).
(a) Clearly M(St(ﬂl)) = £t(01), so that (a) 1s true for n=1. Continuing
by induction suppose the theorem is true for n-l. Now
t t
< (‘°1 A e i nn) < ((nl/\ an A an_l) ADL)
t t
= H(L (91 AT 6 A nn_l) AL (nn)), by Lemma 2,2,
w H[M(.ct(nl) A eos A .tt(sn_l)) A Jt(.s:t(nn))], by induction.
it t t
How M[I(L (sl) Ao A S (nn_l)) A (L (ﬁn))]
= HOHER @) A Lal A £8s_ 1) A £5(5.))], by Theoren L2 ¢,
¥ t
H(L (ol) AN see A E (sn))
t t t
 UKERO,) A wau A L5 1)) A H(EYD)),
t t % &
since £ (91) Ao A (ﬂn_l) < UL (nl) AR SATE (:.Qn_l)).
Thus we have equality. Hence
t t _ t ) t
e (nl) Ao AL (sn)) = d[H(L (nl) Aueo A S (nn_l)) AL (\.on))]

t
£HO) A wa A D).
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() He(o) A oo A £(5)] = HiEY0)) A e n AeHs )

A
u[.s:"(sl) A ves A st(er)], by Theorem 1.2 d,

ﬁ[u(.c""(ol) A eee A LB )))

ﬁ(.s:t(aol A eei A )), by (a)

LA A ea A on).

Examples. (1) Let 8 denote the AFA of l-counters. Now it is known that every
recursively enumerable (r.e) set is accepted by at least one 2-counter [3,
19], Thus the family of r.e, sets is .13(10c A ﬁc), vhich is ﬂ(.!!t(ﬂc) /\.Ct(sc))
by Theoren 2.1, Examining the proof of Lemma 2.2, we see that every r.e. set
is expressible as the homomorphic image of a pair of deterministic realtime
l-counter languages. Since it is undecidable if an arbitrary r.e. set 1s empty,
it is undecidable if LI'W L2 = § for arbitrary deterministic realtime l-counter
languaces.

(2) ILet np be the AFA of pushdown acceptors (pda). The family of list
lanquages defined in [ 8] is the family of e-free la.n{;tw.ges(lq in £t(ﬂp/\ ﬁp).
By Theorem 2.1, .S:t(:')p/\ ﬂp) = 11(£t(-3p) A .Et(.ﬂp)). Let £, be the e-free languages

in s*‘(np). Clearly the family of list languages is then J(SjA & Let

1)

£eCF be the family of e-free context-free languages. It is shown in [14) that

'r'eCF = £l. Therefore the family of list languages can be characterized as
u(.cm/\ £€CF.) It is proved in [11] that Ji(sea/\ .s:GCF) is the fanily of
lanpuases defined by a context-free "coitrol" set acting on an "e-free" context=

free grammar, thereby providing a second characterization of the list lan:uages.

A third characterization will appear in Section 3.

clO)A set is c«free 1f it does not contain €.
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We now turn to H(A.tt(ﬂ)) and ﬁ(/\-ﬁ(ﬂ))

Notation. If & is a multitape AFA, then AD is the multitape AFA /c\z 9 0
vhere @ = (n/n21) and 8 =9 for eaca n.
Theorem 2.2, For each single-tape AFA (0,8)

(1) £Yro) =¥ (AL5(8)) = 5 (£%(9)).

A A4 A P

(2) L(r9) = H(AKD)) = H(AL'(B)) = F(2(0)) = F (£7(s)).
Proof. (1) By Theorem 1.2 e, H(AL%(8)) = :?n(.ct(n)). Suppose
a = (K,z,I,1,£,8). Then AS 1s the miltitape AFA (,¥), where
T = (K,5a,%u), @ = {1/121}), < =<, and u(1) = ([,I,2,g) for each 1.

Let On = )* Now for each n, On may be regarded as the n-tape AFA,

L, «iap B
% A veo AD (n times). By Theorem 2.1, therefcre,.tt(ﬂn) =
HEH®) A oo A £50)). s £5(8 ) = H(A £%(8)). hen

£(An) =u %0 ) = H(A £%(9)). On the other hand, 1f L 1s in ¥(A £%(9)),
n

then L = h(I‘l 0 g wiz N Ln) for some c-free homomorphism h, some n>l, and some
languages L, ..., L_ in £%(9). Then LN ... N L, thus L, is in .c"(nn).
Therefore ¥(A £5(8)) € £¥(A%), whence equality.
(2) Now £(A 8) = H(2(A 8))= H(c¥(n 8))
- HH(A £5(8))), by (1) above
= H(A £8n))
= 5,(£%(9)), by Theorem 1.2 e.
Then L(A 8) = (A £4(8))
- H(A 3(£(8))), by Theorem 1.2 e,
- H(A £(8))

A
= 3n(£(ﬂ)), by Theorem 1.2 e,
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Hence (2) follows.

Using the previous result, we now present a characterization of a (full)
AFL closed under intersection.
Theorem 2.3. £ 1s & (full) AFL containing (e} and closed under intersection
if and only if there exists an AFA (Q,d), O = (X,%,Q,<,u), such that
£ =£%9) (£ = £(8)), Q 16 infintte, and p(a) = u(B) for all @ and B in Q.
Proof. Suppose (Q,8) 1s an AFA such that £ = £%(8) (£ = £(8)), @ 1s infinite,
and p(a) = p(B) for all @ and B in @. Clearly £ contains {e). From the
-IZt(ﬂ) and £(7) point of view, there 1s no loss in assuming C is countable.

Then § = A i A8,, where Qa =&, for all &, The "if" then follows from

a
Theoren 2.2.

1l

Consider the "only if." Suppose £ 1s a (full) AFL containing (e} and
closed under Intersection. Hence there exists a single-tape AFA "Ql such that
t t t
£88,) = £ (£(0)) = 5). By Theoren 2.2, LA 9.) = 5 (£8(8,)) = % (2) = £
since £ is an AFL closed under intersection (L(A ﬁl) = én(-ﬁ(ﬂl)) = ﬁn(.ﬂ) =£L).

The resit then Lollove fror: the fect that A 4, 1is an AFA satisfying the

1
theoremn,

Examples. (1) Let ﬁp be the family of pda and QT the family of single-tape
one-way Turing acceptors (i.e., the input tape is read one way). It is known
that each Turing acceptor can be imitated, without loss of time, by some
s-cuahdoth seceptor * 3 |. Thus £'°(ap) < .ct(sT) c .ct(np AB) = u(st(np)/\ .ct(np)).
Then (A .r,t(ﬂp)) < H(A st(ﬂT)) c H(A .ct(;';p)), vhence equality. Therefore

£ 0) = WA £5(8)) = A £50.)) = 28A n ).
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In other words, L can be recognized in quasi-realtime by a multitape Turing
acceptor if and only if L can be recognized in quasi-realtime by a multi-
pushdown tape acceptor if and only if L is the e-free homamorphic image of the
(finite) intersection of context-free languages.

(2) By a straightforward extension of results in [15] and [L4], it can

be shown that for each n22,

m m my
L n
Ln-{u ..alcaB...a /ml, S— mnzll
is recognized by a quasi-realtime n-counter acceptor but by no (n-1)-counter

acceptor. That is, if & . is the AFA of l-counter acceptors and §, = ﬂc for

i

each 121, then L 1is in £t‘(01 Ao A ﬂn) but not in .!!t(s1 A eee A ‘n Thus

l)'
t t t t
LB) L (8 AS ) =HLE(D ) A LR ))
t t t
SH(E@) AL(a ) A LT(R))
M 4
with each containment proper, forms an infinite hierarchy of AFL properly

contained in £ the family of context-sensitive languages. By contrast it

cs’
is still open whether the family of list languages, the e-free languages in
.l‘,t(.ﬂp A Op) = u(:"(np) A It(ﬂp)), is proper ' :ontained in the family of
e-free languages of R(£t(0p) A £t(ﬂp) A £t(0p)) or vhether the family of e-free

t
languages in £ (ﬂT) is properly contained in ":cs'

In passing, we note below a specialized result between the A operation,
linear homomorphisms, and AFL.
»*
Definition. A homomorphism h is linear on L & 2.1 if there exists k>0 such

that |wl<k|h(w)| for all w in L. For each family of languages £, let
¥H8(£) = (B(L)/L 4n £, h linear on £).
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l‘J.‘l.n

It is shown in [ 9 ] that (£) is an AFL for each AFL £.

Theorem 2,4, Given d,,d,, and d3, Hlin(/\ L) = 3111n(£A'.f'(L) A’(L))(m for
*
every e-free AFL £(l2) containing L = [wd3wR/w in [dl,d2] ](]3.
Proof. Since L is in £, l‘lin(.t/\fKL) A¥L)) € Nlin(/\-ﬂ). It thus suffices to

show the reverse inclusion. Therefore let Ll, 30 a3 Ln be in £, with

n

*
U Li < Zl, ):l finite. Let ¢ be a symbol not in &
il

»*
= [wd3wR/w in {dl’da} J, F(L) contains the e-free linear context-free

1+ Since F(L) contains

languages. Therefore F(L) conteins the linear context-free languege

- R ¥* - n - ¥* n-1_%
LZl {wew ' /w in Zl]. Let Sy (Lzlc) » S, Zlc(LZlc) lZlc, and

no * * ) R n *
L' = (L) cZjc) ... (L cEyc). Then SN 5, = {((wew'c) ' /w in Zl],

L'n s s, = ((wev'e)™w tn L N .o N L),

and S.N S, is in F(L)AF(L). For each a in Z., let a be a new symbol and

1 2
= {(a/a in £). leth

1’

>~2 10 Bo and h3 be the homomorphisms defined by

hl(a) = hl(g) = a, hl(c) = ¢, h2(a) = a, hz(g) = h2(c) = ¢, and h3(a) = g,

h

for all a in Zl. Then

h;_l(L')ﬂ hil(sl)n 2;°(22U{°})*

LI/

[wch3(wR)c [h3(w)ch3(wR)c]“'l/w inILy N ... N Ln].

Since £ is c-free, h, 1s linear on L’ and LN..nL = h2(L”) is in

2
WY A F(LIAF(L)). Hence WM (ALK ¥ IIN(LAF(LIAF(L)), whence equality.

(n)We write F(L) for F({L}).
(12>A family of languages £ is c-free if each lanmuage in £ 1s eafree,

(13 R, R _ :
let ¢ €8nd(al an) & ... 8, each a, a symbol.
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Section 3. Multitape Transducers

In the previous section we established some comnections between
multitape AFA, AFL, and the A operations for AFL and multitape AFA. In this
section we add an output tape to a multitape AFA to obtain an associated
family of multitape transducers. We then note connections between multitape
transducers, composition of single-tape transducers, and the A operation for
multitape AFA,

We first define multitape transducers.

Definition. Let (7,9) be a multitape AFA, with Q = (X,Z,0,<,u).

Let (O,ﬂo) or 8° vhen O 1s understood, be the set of all 6-tuples

M= (Kl,zl,ze,é,qo,v), called multitape transducers, such that
(a) Ky» Z;» and I, are finite nonempty subsets of K, I, and %, resp.

(b) q  is in K.
(¢) v =(al, ceey ak), k finite, @, in G for each i, and @, <a,,, for

(d) & is a function from K, X Z.lU(e]) X (I‘a X vo. X rak) into the

1
*
finite subsets of K, X (;a X oo XI )X 5, such that

1 "

Gy = vy ooy )8 8, (vg5 00y v ))f @ for some q and al
is finite.

Qo is saild to be a multitape abstract family of transducers (ebbreviated,

multitape AFT).

In a multitepe transducer, K are called the "states,"

1 Zl, and 22

1

"inputs,"” and "outputs,"” resp.
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The rotation for the movement of rmultitape transducers is similar to
that for acceptors.

Notation. Let M = (Kl,z 22,5,%,1;) be a multitape transducer. Let [— be the

l’
* *
relation on K, X & X (I, X ... xT_ ) X £_ defined as follows:
1 all al Ok 2
For & in S.Ule), w in &, and y' 4n o
2 LACLE DA

(q’aW;(Yl) ey Yk)’ y') l‘_ (q';W;(Yi: veey Y}l{): I'IY)

if there exist vy,, ..., Y., each y, in g_ (y,), such that
1 X 1 =8 5, g
(ay(upy «ovy w)y ¥) 1 dn 6(qe, (Yy, +.vp ¥y )) and £ (vy,u,) = Y{ for each i.
i

*
The relations ll and [—— are defined as in a multitape acceptor.
A multitape transducer realizes a function in the following way.
Notation. Let M = (Kl, 15 Ze,d,qo,v) be a multitape transducer. For each

*
w in Zl let

M(w) = [z/(qo,w,e,e)}i (p,e,€,2) for some p in Kl].

¥
For each L& L

1 let ML) = U Mw).

winlL
We shall need some speclal types of transducers.

Definition., Let M = (Kl, 21,22,6,q°,v) be a multitape AFA.

(1) M is e-input bounded if there exists m20 such that for all

n
Q-qI,YiJYi) y, and yly (QJE) (Yl’ cesy Yk)’Y)!—(q';er (Y]’_: veey Y}:))y’)
implies n<m,

(2) M 1s e-output bounded if there exists m>0 such that for all

%q’y"’)w"Yi: and Yi: (%WJ(YI’ ceey Yk):e) "P'(q”w’y(Yi: oo le))e)

implies n<m.
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(3) M is partially e-output bounded if there exists m20 such that

for all q,q’,w,v,, and vy, (qw(vy, ooy vk),e)}-r-(q',e,(vi, ooy Yy)s€)
implies |w]sm,

Note that M 1is e-output bounded if it is e=-input bounded and partially
€=-output bounded. Also, 1f M is partially e-output bounded then it is e€=-output
bounded.

Notation. Let (Qy,9,), «.., (0,0 ) be multitape AFA and (ol,s‘l’), veuy (A ,9)

B be the sets

the corresponding AFT. Let ﬁ m M, and mt
39 eo e 9 ’ ol LN nn sl n

1l
of mappings defined by

= (o]
m‘°1 o T (MM _ ..o Mj/each M, 1n 8],
My g = [Mn ces Ml/ea.ch M, in Dz and partially e~-output bounded},
l o e e n
and T o =M ... M/each M, 1n 8, c-input bounded, and e-
l LN N n

output bounded).

A
Let M, , (£) = (g(L)/f in g » Lin ],
LN A ) n o0 0 n

8y
L g (£) = {£(L)/f 1n My g » Lin L],
L l L N ) n l 200 n
% t
and My o (L) = (£(L)/f in Mg .. g» Lin £l
1 n 1 n

We now present two lemmas which play a role analogous to that of
Lemmas 2.1 and 2.2.
Lerma 3.1, Let £ be an AFL containing {e} and (0,9) a multitape AFA, Then
ferco)= By (),
HEAL(R) X Mma(£):
and  W(eAL®(0) )k ME(L).
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Proof. Iet L, be in £ a.ndLain.ﬂ(s). Let L2=L(D) for D =
(K._L,):l,@l,qo,Fl,u) ind, v = (al, — ak)' Let ¢ and T be new symbols in I
end K resp. Then Lyc is in £ and Lyc 1s in £(8). If L, 1s in £¥(9), then
L, 1s in £%(9). Let h be a homomorphism from z; into z;.

Let M be the multitape acceptor (K._I_U{ﬂ, Z‘IU(c], Zp 62,qo,u), where

v = (U, eoo, a'k) and 62 is defined as follows:

(1) Tet (o' (w, ...; w)h(e)) e in 6, (a8, (vy, «ovy vy)) AF
(q”(ul’ cevy uk)) is in 51(%9-;(Yly seey Yk)).

(2) et ('f",(la ) seey lak), €) be in 62(p,c,( €, +esy €)) for all p in F.
1

Then for w in ZI, q_,q' in Kl,
(0w, (vpy eees Vhe)R(a’se,(v]5 -oey vp), B(W))
if and only 1if
(LW vy weoes MGy 65(vys ons v))).
Thus M(Llc) = h(Llf\ L2), so that h(Lln L2) is in T,T\ls(-ﬁ). If h is e-free, then M
is partially e-output bounded, so that h(Llﬂ L2) is in mﬂ(.c). If D is quasi-
realtime and h 1s e¢-free, then M is e-input bounded and e-output bounded, so
that h(Llﬂ L2) is in m;‘(.c). This completes the proof.
Lemma 3.2. Iet £ be an AFL containing (e} and (0,9) a multitape AFA, with
(Q,ﬂo) the corresponding AFT. Then
ny()E H(A20)),
nE)R UAL(D)),
and YL HEAL(D)).
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Proof. lLet Lbe in £ and M = (Kl,):l, ~ l,qo,u) in 8°, with v= (0‘1' cee) °‘k)°
Let

n = mmc(lz|/(p',(u1, coey W )yz) An 8(py8y(Yyy ooy Y,)) for some p, p’,
Sy Vi eeey Wy Yop o eee Yk]'
Since Gy, 1is finite, n exists. For w in z;, 1 <|w| € n, let ¥ be a new symbol
and Z; the set of all such v. LetD = (KU (KX Zq ), ZV Zg 52,qo,xl,u),

vhere 8§ 1is defined as follows:

(1) 1 (a’y(vq, coey w),2) 18 in 6 (ay8,(yyy +-vp Yy)), then
(@ ((a'52),(u, «ovy w)) 18 1n 8 (ay8,(vys +ovy vy ) 4F 2fe.
(8) (a's(uy, «eop w)) 15 dn 6 (a8, (v o0y v,)) A z=c.
(2) (2,(Uap,yy) oo U,y ))) 1s dn 5,((92),2,(vys o ¥y )
for all (q,z) in Ky X z and all (yl, desy yk) in G
let L = I{D) and L, = Shuf(L,z )ggo Then L, is in £(9) and L, s in .c°5)

Let h be the homomorphism on Z..LU Z. defined by h(a) = € for a in Zl and
h(w)= w for ¥ in Z,. Then ML) = h(LG Ll), so that M(L) is in Jl(w(s))

Suppose M 1s partially e-output bounded. Then there exists uch that
(q,w,(y:L yk),e) |—(q',e,(y]'_, T Y}:),e) implies |w|[< m. Then for any
xwy in Ly, h(w) = ¢ implies |wl< m*l. Thus h ir e-limited on L end so on
LN Ly Now N(EAL(8)) is an AFL. Since £ contains (e} and £(#)contains (e},
H(LAL(D)) contains {e}. Therefore h(Llﬂ La) is in H(LAL(D)) [5). Hence M(L)

is in N(ZAL(H)) 1f M is partially ec-output bounded. If M is e-input bounded,

@) Lt Ly end L, be languages. Then Shuf(Ly,L,), the shuffles of L by L, is
defined as the set

) [w Yy oo wy/ Wy eeo Wodn Lo,y eee ¥ in Ly, n>1}.
It is known (5] that if £ is an AFL, L is in £ and R is regular, then
Shuf(T,R) is in L.
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then obviously D is quasi-realtime and L(D) is in £%(8). Thus, 1if M 1s
e-input bounded and €-output bounded, and thus partially e-output bounded,
then h(Lzﬂ Ll) = M(L) is in u(wt(n)). This completes the proof.

Using the two previous lemmas we now dexrive
Theorem 3.1. Let (01,91), e (Qn,sn) be miltitape AFA and £ an AFL

containing (e¢}. Then

my NOE ﬁ‘(s/\.c(nl) Ao A D)),
1l n
m, s (£) = u(w(nl) A aze N .c(on)),
1 n
and My o (&) = n(.w.t(nl) Aeen A 20 )).
e

Proof. We proceed by inducticn on n. The result holds for n = 1 by the

previous lemmas. Suppose n>2 and the theorem 1s true for n-l. Then

A A
My . g (&) =My (g o (£)), by definition,
1 n n 1l n=-1

A A
= mgn(u(.t:/\.:(sl) A grern A £(0n_l)), by induction,

= H((eAL(8)) A .o A £(8_ 1)) AL(8_)), by induction,

Now  H{R(IAL(A)) A vuu A S8 1)) A £(8))

2 HLEAL(8.) A vev A £(2 )]
= ﬁﬁ[.l:/\.c(nl) A ssa A .c(nn)]
2 ﬁ[ﬁ(.:/\.c(nl) A vee A s(nn_l))/\ﬁ(-t(ﬂn))], by Theorem 1.2 c,

= WHEAL(R,) A oer A S(8__ )IAE(R ),
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x>

Thus M, 0 () - (FeAS(D) A oo A E(0)AS(D))

e
= ﬁ[.w(ol) A ees A S()]

In a similar manner,

R nn“) i} "‘an(“‘ol sn_l(”)

= mnn[u(.w:(ol) Aees A .r.(ann_l)]

= NM(EAL(R,) A wow A (B )IAS( )]
(5] ﬁ[ﬂ\.ﬂ(ﬂl) A eee A 'c(nn)]‘

Similarly mz 0 (£) = u[.r./xtt(nl) A ees A .ct(on)].
9 e B

As a corollary, we get

Theorem 3.2. Let(ol,ol), o0y (Qn,ﬂn) be single-tape AFA and £ an AFL

A A
containing {e}. ThenMy , o (&) =My o (L) and
1 n 1 n
mt =m®
NI GO R SO
1l n 1 n

Proof. ﬁlnl A mn(.t‘.) = H(W(ﬂl Aoees A ﬁn)), by Theorem 3.1,

L}

A A
N(.C/\N(.t('ﬁl Ao TN .\:(nn)), by Theorem 2.1,

ﬁ(.ﬁ/\.ﬂ(ﬂl) ARt S(Qn)), as shown in the

proof of Theorem 3.1,

m
0

9 (£), by Theorem 3.1.
l L N ] n

A B (£) = m); 9 (£) follows .similarly.
n n

The proof that m;f
l LN )

lA o0 0
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Remark. Theorem 3.2 asserts that the composition of single-tepe transducers
is equivalent to a multitape transducer, from the point of view of families
of sets produced as output by (1) all transducers, and (2) e~-input bounded
and e-output bounded transducers. In general, however,

m (£) #m (£). For, let £ be the family of regular sets
ol * o0 ﬁn nlA L ] Aon

and 91 = 02 = ﬂp, the family of pda. Then

My A 8

I p(.i:) = H(N(np/\ sp)) = .c(op/\ np),

vhich is the family of all r.e. sets. Since :(np) = Lt(ﬂp) [1k4],

M o () = MOS8 NS(6,))
= U(E(® NE(8.))
= H(£5( IAT(s.)).

Now 31(£t(np)/\£t(;0p)) contains only recursive sets (in fact, only context-
sensitive languages and context-sensitive languages union {¢)). Thus

My o (£) 1s a proper subfamily of Mo A 8 (£).
PP P P

Exsmple. The list languages have already been characterized as each of the
following families:

(1) The e-free sets which are recognized by quasiercaltime 2-pda
acceptors.,

(2) The e=-free sets which are the e-free homomorphic image of the
intersection of quasi-realtime pda languages, l.e., the e=-free sets in

t

e (ﬂp)/\.tt(ﬂp)).
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(3) The sets obtained from context-free control sets acting on e-free
context=free grammars.

Using the previous theorems we may add the following characterizations:

(4) The e-free sets obtained from partially e~output bounded pushdown

transducers operating on context-free languages, 1l.e., the e-free sets in

t o = b t
T (£50,)) = M@ NE(R)) = et s 1o, )).

(5) The c~free sets obtained from e-outpuc bounded and e-input bounded

pushdown transducers operating on context-free languages, i.e., the e~free

sets in m‘;‘g.ct(sp)) = ¥ ().

(5) The e-free sets cbtained from e-output-free pushdown transducers
operating on context-free languages. [For, let ¥ be the set obtained from
e=output-£free pushdown transducers acting on context-free languages. It can

be shown that m;f (Lt(ﬂp)) SFem, (.tt(ﬂp)), the second containment by a
P p

recoding argument. Since My (.Bt(ﬂp)) = u(.ct(op/\.ct(np)) = m;‘ (xt(op)),
p P

F =n, (£4%5.)).
zgp P

Section 4. Nested Multitape AFA

In this section we study "nested" multitape AFA. We shall see that
they allow a representation of the substitution of AFL into AFL.

Intuitively, a multitape acceptor is "nested" if each move can change
at most one storage tape, and all tapes to the right of this one are e. 1In

order to express these two conditims in our formalism we need to distinguish
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identity instructions in our acceptors. More precisely, we have
Notation, For each @ and Y, let y (y) = (u in Ia/fa(v',u) =y’ for all y' 1n
&y (1)), vhere g, (y) = v'/y 1n g (v")).

By definitdon of an AFA schems, y (v)# # far each y in ga(r‘;).

We are now able to define a "nested" multitape AFA.

Definition., A nested miltitape AFA is a pair (0,8)), vhere

(1) (Q,9) is a miltitape AFA, with Q = (X,Z,0,<,u),
and (2) #" s the set of all D = (Ky,%,,6,q,F, (0, ..., @ )) in & vith the
following property (for arbitrary q’,q in K@ in r._LU(e], (ul, cony uk) in

I, X eoo X I, 803 (Yy vey ve) 1n Gp): If (o) (v, «vvp w)) i tn

’

% %

8(q,8, (yl, oy yk)) and u, is not in y, (y,) for some £, then u, is in
2

v, (y,) for all 1# 4 and v, = € for all 1>2,
aii i

Each D in ﬂN is called a nested acceptor.
Notation. Let £(8") = (L(D)/D in &%) end £¥(®V) = (L(D)/D 1n o" and D quasi-

realtime).

Note that if D is nested and (q,8,(Yy, +v+y yk))l—(q',e,(y]'_, % oo y]:)),
then there is at most ane £ with y,f v,, and either £ =k or Yy =€ =y£
for 1> 4. Thus at most one tape of D 1s changed and all tapes to the right of
it are inactive, 1l.e., are €.

The meaning of the term "nested" becomes clearer if we consider some
familier AFA. Suppose an acceptor such as a pda, a Turing acceptor, or a

one-way stack acceptor [6] has the storage configuration depicted in Figure 1,
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that 1s, a tape with a read-write head which affects exactly one symbol of

the storage tape. This type of configuration 1s usually reflected in the

L L] L] z L] L4 L L]

Figure 1

formalism by a pointer symbol, say |, and the definition g(xZ]y) = 2, vhere 2
1s a symbol and x and y are words vhich may have other restrictions. (In a pda,
y = €; see Example 4 in (5] for the definition of a one-way stack acceptor.)
In these cases, activating a tape is equivalent to inserting a new tape,
initially €, enclosed in markers--say matched brackets--where the read-write
head 1s. The nestine condition says that the head cannot leave the bracketed
vape until the bracketed tape becamews <. This is equivalent to preventing
the multitape AFA from changing a tape until all tapes to the right are
inactive. Restricting the device to n tapes is equivalent to restricting the
depth of the nesting of brackets to n. For pda and Turing acceptors, nesting
does not affect the computational power of the type of device. For one-way
stack acceptors, we shall see later (Example 3) that nesting increases the
computational power. We shall show in this section that nesting of devices 1s
related to substitution in languages.

From the definition, it is clear that & = 8" for each single-tape AFA.

However, in general a nested mutitape AFA need not be a multitape AFA as
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defined in Section 1. To motivate the use of the word "AFA: after "nested
multitape, " we now show that a nested miltitape AFA is equivalent (from the

sets accepted point of view) to a single-tape AFA.

Lemma 4,1. For each nested multitape AFA (Q,ﬂN), there exists a single=tape
AFA (T,5) such that £¥(®) = £5(0V) ana £(F) = £(a™).
Proof. let §,5(v), [" and g be as in the proof of Lemma 1l.1. For

v = (al, seuy CLK), 1< 4<%k, and u in Iaf,’ let g(v,4,u) be a new symbol and
T = (olv,4u)fv = (@), «eey ), 15 £ <k, utn I, Juls(v)/ad1 vluled.
£

For v = (g, +vvy @), let Fe,o(v)) = a(o) L, Fo(0)e"" €) = ¢, ana

f(e,e) = ¢. Forv = (al, A ak)’ (xl, Ty xk) 1.:11';:L X voa X I‘;k, £ such

thateithert=korxi=eforau1>t, end u in I, let
f)

F(c(u)§xl§ ves xkg,c(v,l,u)) = c(u)gx]'_§ - x.ég,

vhere x| = x, for all i, i#2, and x) = £, (x,,u). By the same reasoning as in
i y/ o, L

Lemma 1.1, (F,I,T,g) is an AFA-schema. Let Q = (X,z,[,I,T,2).
Let D = (Kl,zl,é,qo,F,v) e in &', Let E'o and r_ be new symbols in K
and D = (KIU[Ho,rol,Zl,'é-,Eo, (rol ), vhere § is defined as follows:
(1) 5_(60,6,62) = ((qoyo'(v)]‘
\ okl
(2) (r,¢€) s in §(p,e,00)3" ~) for each p 4in F.
(3) I (') (agy +ovs ) 25 10 5(08,(yp, ovey ¥,)), then

g-(q.,aodv)éylé Yk%) contains
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(a) (q',c(v,l,ul)) if vy, = € and u, is In wai(e) for all i, 1<1i <k.

() (a’yo(vy4yuy)) 1f v y#e, v, = € for all 1>4, and u; 1s in

vai(yi) for 1< 1<k,

(c) (ql,g(v,Z,uL)) i1f u, 15 not 1nvaz(yz), u, 1is in\yai(yi) for
all i#4, and v,= € for all 1>4

Clearly L(D) = I{D) and D is quasi-realtime if D is.
Now let D = (Kl,r.l,é,qo,F) be in ¥, ILet
s = (vAq’,0(v)) 1n 8(0,e,€) fcr some q and a).

As in the proof of Lemma 1.1, we may assume that there exists vo=(al, 5077 an)

sn.

such that 4f v is in S thenv = (&, , «.e, Q, E
Ji J k

) for some 1 € j; < ... <
k

We may also assume that if (q',q(ul,!:,u)) is in 6(q,a,c(v2)§yl§ odle Yk§), then

*
U1=U2=(aj’ ceey aj)isins, uisinIa.,Yiisinga (ra. ) for
1 k Jg 'ji Ji

1<isk andy, =c for >4, LetD = (xlx(su{e)), 21,61,(qo,e),F X[e],uo),

vhere 8, ic defined as follows (for arbitrary v = ((:t‘j s ooy Gt‘j )):
1 k

(4) ((que): (lal, seey lC! )) is in 61((‘1}€);a:(€) ceey €)) if (que)
is in §(q,8,¢).
(5) ((a’se)y (L, «oer 1, ) 1s 10 8, ((qv)ey (e, .o, €)) 1f (2')€)
1 n

15 1n 8(q,8,0(v)EF™).
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(6) ((q':")’ (lal’ EED) la )) 1s in 6{(%€),a’(€; ceey €)) if (q':d(v))
is in 5(q,8,¢).
(7) ((q"U)) (ui: XY urll)) is in 51((%\’))3-)(Yi; seey Yr:)) if

(a’,5(v,2,u)) is in 5(%370(U)§YJ B Yy £), where Yy =€ for all i>£,
1 k i

!

u' = 1Ua,, vy, ) for all 1#4, u! =y, a.ndy3=<-:a.ndu3=la for all J not
T Jg 3

I

in (Jl, ooy Q0

Then L(D) = I(D) and D is quasi-realtime if D is.

From Lemma 4,1 there immediately follows

Theorem 4.1, For each nested muliitape AFA ON, £(0N) is a full AFL and £t(ON)

is an AFL containing (el.

We now present some definitions and remarks about substitution, the

aperatiorn to be assoclated with nesting.
* *
Definition. Let L < Z‘.l and for each a in El let LaC Ea. Let T be the

*
by t(e) = {e}, r(a) = L, for each a in I,, and

function defined on Zl

-r(a:L an) = T(B.l) 'r(an) for*each a; in I, and k*1. Then 7 is called a

substitution, T 1s extended to 221 by defining 7(X) = U 7(x) for all
xin X

* +
X< L. If v(a) S T, for each a in Z,, then 7 is called e-free.

1

Notation. let £, and £, be fanilies of languages. Let 3(.:1,1:2) (5(£,,£,)) ve

*
the family of all sets 7(L,), vhere LE Z. 1is in £, and t is a (e=free)
1 1

substitution such that r(a) is in £, for cach a in I,.
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- A A
We usually write g(£1,£2) as &y o £2 and g(£l,£2) as £l gL,
Pemarks. (1) Let I.l and £2 be families of languages. Let I'a =

(L 1n£2/e not in L}, Then £.o £ =£.5T .. Note thatr? is an AFL if £_ is.

1° %2 " M1 %2 2
(2) It was shown in [13] that ,’} 1s assoclatlve on families of language-

A A = A
closed under isomorphism, i.e., (£lc £2)g £3 = £1g(£2c £3) if £1,£2. and £3

are families of languages cloced under isomorphism. The same proof shows
that o is assoclative on such families of langusges. Because of thils associa-
tivity, we shall omit the parentheses in iterated applications of o, resp.
S, when the underlying famllles are closed under isomorphlism, as in AFL.

(3) Neither ¢ nor ¢ is commtative, even on AFL, %.e., both

i A N A
£la £2 = £2° £l and .Elc £2 £2c £l are false for AFL £1 and £2. For let

£l e the quasi-realtime one-way stack languages and £, the con.ext=free

2
languages. Then £2° £1C £l, but .ﬁlo £2C £l is false [16]. The situation for

4 follows from that for ¢ by Remark 1. [A separate example for 3 is to let

iy

£1 be the recursive sets and £ 1° o

the regular sets. Then .tzé :'1 =L, but £

) 1

is the family of r.e. sets and thus not .tl.

ap A
(4) If £, and £2 are AFL, with £. full, then £1c .22 £,6 £2

1 1

cf b, 5
Proof. Clearly .l!lg £2 .Cla .£2 To see the reverse containment, let LlC El

be in £, and T & substitution such that v(a) 1s in £, for all a in 5,0 Let

2

*
T, be the substitution on I, defined by 'rl(a) = {a} 1f ¢ 15 not in 7(a) and

'rl(a) = {a,e) 1f ¢ 15 in t(a). Since £, 1is a full AFL, -rl(Ll) is in £,. Let
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*
T, be the substitution on I, defined by 1’2(8.) = r(a)-(e) for each a. Then

Te(a) is in £_ for each a. Thus 1'(L1) = 72(71(1’.1)) is in £10 £, so that

2

2L
.l'.lq £2 .th £2.

(5) If £, and £, are AFL, with £, containing {c]), then

2

A A A A
£5 8, = ML) o Ly = WEY) 0 L

A A A A
Proof. Since ¥(£,) is & full AFL, H(J:l) o £, = ¥(L;) o £, by Remark k.

2 2

A
Obviously £1?1 £2C H(.ﬁl) 8 £2. To see the reverse inequality, let Ll be in

¥*

* * *
<
£l, Ll zl, h a homomorphism of ).‘.1 into 22, and v a substitution on ).‘.2 such

that v(a) 1s in £, for each a in L. Let c be a new symbol and T the

substitution on (22U(c] )* defined by v(a) = v(a) for each a in %_ and t(c)= {el.

2

Iet h be the homomorphism on EI defined by (1) h(a) = h(a) if a is in L, and

h(a)fe, and (11) h(a) = ¢ if a in Z, and h(a) = €. Since h is e-free, H(Li)
e A A A A

is in £;.  Clearly 'r(h(Ll)) = T(h(Ll)) is in Lo .1:2. Thus u(.sl)o Ir £3 <

and the proof is complete.

2

We now present two lemmas that play the roles of Lemmas 2.1 and 2.2

of Section 2.

Lerma 4.2. Let ‘°1 and ’°2 be multitape AFA and 03 = 8,7 02. Then

£5a]) o £¥(0]) = £%a})
and x(og) o .c(ng) c .c(sg).

Proof. Let Oi = (K’z)ai)<i)ui) for 1 = 1,2. Let Dl = (Kl’):‘l’él’qo’Fl’vl) be

N o N
and for each a in I, let D = (Ka,za,éa,qua,ua) be in 9,. We may

in ﬂl 1
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assume thet KN K =X N K for all a and b, afb, in Z,. By extending each

Vg if necessary, we may assume that there exists v, = (Bl, soey BL) such that

2

*
Vg =V, for all a in %,. Let 7 be the substitution on L, defined by (a)= L(Da)

N -
for each e in L. We shall construct D3 in 03 such that L(D3) = -r(L(Dl)).
Let D, = (K 0] z,s F.,v.), vhere K, = K.U U (KX K_)
3 3’a a? 3:9.0: 1273/ 3 Kl . K'.l. al?

vy = (al, veey Gy Byy eeey BZ), and 63 is defined as follows (for each q in

Ky, & in &), and (Yl, coey Yk) in GDl):

(1) Let (q',(ul, osdy Moo 181, sesy ]EE)) be 1n53(q’€’(Yl’ °'°’Yk’€J veey€))
if (ql)(u-l’ veey u'k)) is in &l(%ey(Yl) ve0y Yk))‘

(2) 1ot (Rgy)s (e¥y), ooer U, Ty, vevs Ty )) e 3
53(%3;(Y1: *ers Yo €9 o0y €)).

(3) I‘et((‘bp‘): (l(al’yl)’ veny l(ak’vk)’ Wy ecey “z)) be in
63((q,p),b,(yl, ceny Yk,vi, ’“’Y;,)) if (p',(ul, ceey “!,)) is in aa(p,b,(yi,...,yz)),
vhere p 1s in X, b in I, and (Y]'_, vs e y},) in GDa.

(%) Let (q"(ul’ ooy Uy lBl, oenf lﬁz)) be in 63((q,p),e,(yl,...,Yk,e,...,e))
if p is in Fa. and (q':(ulr -“.vuk)) is in 51(%31(Y1’ seey Yk))-

Clearly L(D3) = T(L(Dl)). Since D, and the D are nested, so is D If D

3" 1
and the Da are quasi-realtime, and v is e~free, then D3 is quasi-realtime.

(For 1if Dl has at most lf.l e-moves and each Da at most ka’ then D, has at most

3
anax[ka/a] * k) * 2 consecutive e-moves).
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The reverse inclusions of Lemma L.2 are also true. That is, we have
Lemma 4.3. Under the hypotheses of Lemma 4.2,
£H03) <=*(0]) o 5463
and  £(83) < £(8]) o £(0}).
The proof of Lemma 4.3 is quite involved and is not especially enlightening.

As such, it i1s given in the appendix.

lemma 4.4, Let (ql,nl), ceey (nn,nn) be multitape AFA, with n22. Then
LA (R IR N ATy I st(ng) o vee 0 £5(80)
and  S((0A .on A B )Y) = £(0]) & £(8)) & ... 5 £(8))
= £(8]) o £(82) o +er o 2(8))
= £%(8)) 8 (£(0) & ve o £O))
Proof. Suppose n=2. By lemas 4,2 and L.3,
o pn 8)M) = £¥al) o £¥(ah)
and  £(87) 8 £(83) = £((0p 8,)) € £(8]) o :(ng).
stnce £(8]) o £(83) < £(8)) & £(93),
£(8]) o £(83) = £(8)) & £(87) = £((8 1 B,)Y)
. ﬁ(.ct(og)) 5 £(03)
= st(ni') “ z(ag), by Remark 5 following

the definition of substitution.
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Continuing by induction, suppose the result is true for ne-l>2,

Consider n. Then

i N t N t, N
£ ((ﬂl/\ o A ﬂn) ) =¢ ((81/\ azas A on-l) o f (ﬂn), by induction,

t,.N N t,.N
= (nl) G eee O £t(\0n_l) gl (ﬂn), by induction,
and L((8, A A D )N) = L((0,A A S )N) £(ﬂN) by inductio
1 """ "n 1 °° nel & n’? T
= (M) 5 ... o L&Y )0 £6Y), by induction
1 e ne1//9 L ?

= £(01;_) AR UAS(ﬂg), by Remark 5,

A
H(EH(0])) & (£(83) & vuv 8 £(81)), by Remark 5,

ligeboly)

Q>

(.c(og) o +vr o £(8))), by induction,
= %)) & (£(8}) o ... o £(8])), by Remark 5.
Since ON = § for a single=tane AFA, we immediately get
Theorem 4,2. ILet (nl,sl), ceey (“n"n) be single-tape AFA, with n>2, Then
5 N t t t
L ((nl/\ Ann) ) =8 (sl) od (ne) T ees o & (nn)
N
and  L((8A ... A D)) = £(8,) § £(9,) 3 ... g £ )
= .B(ﬂl) v 5(92) T ees O £(ﬂn)
= £0) & (£2) £(8.))
1 2 T eee O n .
From Theorem 4.2, we derive

Corollary 1. If ":1’ AT £n, n>2, are AFL, then so is -310 -ﬁao cee O -ﬁn.

Proof. By induction, it suffices to show the result for n=2,
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Csusider n=2, There exist single=tape AFA ﬂl and 02 such that

.ct(si) = £,U(1Ule)/L 1n £,) for each 1 [5]. By Thearen k.2,
t t = oL N
so that £t(ﬂl) o £t’(£ 2) is an AFL. By definition of the operation o (c=free

substitution),

£%8,) o .ct(na) = £%8,) o £,

= (0 £2)U([IU{e]/L inf)o £).
If £, contains ¢, then £10 £, = .c'“(sl) o tt(ﬂa). If £, does not contain (el,
t t
then {10 £, = (1-(e)}/L tn £%(8;) o £ (8,)3.
In either case, .Slo £2 is an AFL.

A

Corollary 2. 1If £l’ vwoy .!!n, n>2, are AFL, then so is £lc'} £28 ces O SL.

Proof. Again it suffices to cansider the case n=2. If I, does not contain {e],
A A
then £ £, = Lo £, If £, contains {c], then .tlé‘ .c2 = u(.cl) o £, by Remark 5.

In either case, £lr¢ £2 is an AFL by Corollary 1.

Corollary 3. If £l is an AFL and £2 is a full AFL, then £13 £2 is a full AFL.

Proof. Let 9, and #, be AFA such that £5(8.)= £.U(IU{e)/L 1n £,) and £(8.)= ..
EXogt 1 A 17 %1 1 2/¥2

t IV t
By Theorem k.2, £7(8,) & £(8,) = L((® 1 8,) "), so that & CHE: £(8,) 1s a

full AFL. Now

st(nl) 5 5(8,) =(£,8 LU (e} /L 1n £.3 £ ).
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By Corollery 2, -ﬂlé 52 is en AFL. Siunce {e) is in 513 32 ((e) = r({a)) for the

suostitution t(a) = {€}), 818 £2 - £t(ﬂl) g £(02).

Remark. Corollaries 2 and 3 were proved in [13] by different methods. By

Remark 1 of Sectiom U4, Corollary 2 implies Corollary 1.
Corollary 4. Let (Q,8) be a multitape AFA, with Q = (K,Z%,Q,<,u). Then

£¥(e") = v £, ) o vee o £5(8y )

n22
aima !

a.]_<...<<:zn

end  £(8") = Mo Sy ) o e o (8 ).

@, 1nC ! Z

a <... <a
n

1

If G is finite, say @ = (&), ..., 2 ), then

@M =% Yo vee o .ct(na )

%

and LAY =L(0_ ) o vee o £, )

% n

= s(oal) 5 eee 3 E(B, ).

We now turn to the representation of the "substitution closure" of
t
£°(8) and £(B).
Notation., For each family of languages £, let

(a) B(L) be the smallest AFL containing £ and closed under e=free

substitution.
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(b) &(£) be the smallest full AFL containing £ and closed under

substitution.

(e) o(L) = ngl o (£),vhere o,(£) =£ 5 & and 64,4(L) = 0,(£) 0 £ for
each 1>1.

(a) 5(£) = u § (£), where 2,(£) = £5 £ and §,,,(£) =5,(£) § £ for
each i>1.

A
Thus J(£)(4(£)) is the e-~free substitution (substitution) closure AFL
generated b £, cn(.t) (r?n(.ﬂ)) is the "n-th level of e=-free substitution

(arbitrary substitution) of £ into itself."

If £ is an AFL, then from Remark 2 following the definition of substitu-

tion, on(-ﬁ) =L 5 oo 0 £ (n occurrences of o) and Sn(.ﬁ) =£8 ...56¢
(n occurrences of' 7).

We now present the result relating substitution closure and nested

multitape AFA.
Theorem #.3. Let # be a single-tape AFA. Then

sP )Yy = 5(£¥8)) = H(ebs))

and  £((A)") = 4(2(8)) = H(@))
= o(L(8)) = 4(£(8)).
Proof. For each 1>1, let Di =48, Then

t Ny _ t N
ORENEXCREREE Rl
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u .c'“(nl) o vee o £%(8)), by Theorem k.2,
=l R

a(£%s)),

U L(@A oue A nn)N)
n=1l

n

and  £((n0)Y)

U (8(01) 8 ees b .I:(ﬂn) ), by Theorem L.2,
=l

3(£())

n21

o(£(8)).

Since o(.tt(ﬂ)) = .Ct( (M)N) is an AFL containing £t(0) and closed under e=-free
substitution, J(£%(8)) s o(£%(8)). Obviously o(£%(8)) = $(£%(s)),
so that o(£%(8)) = J(£%(8)). By similar reasoning, 4(£(8)) = £(£(8)) and

a(£(8)) = HL(8)), completing the proof.
Corollary 1. For eact AFL S, (L) = J(£), and o(£) and 5(£) are AFL.
Proof. By Corollary 1 of Thearem 4.2, on(-t) is an AFL for each n2l. Since

s (£) € a_,,(8) for each n21, o(f) = U o _(£) is an AFL. Similarly, using
n n+l 1 B

Corollary 2 of Theorem 4.2, 5(£) is an AFL.

Clearly cn(.c) < J(£) for each n2l. Thus o(£) < $(£). sSince o(£) is

closed under e-free substitution, J(L) € ¢(£), whence equality.

Remark. (1) &(£) need not be a full AFL. For let £ be the family of context-
sensitive langusges. Then { is an AFL and 5(£) = £, but £ is not a full AFL.

The next corollary shows that 3(£) is a full AFL if £ 1s a full AFL.
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(2) It wes shown in [13] that 5(£) is an AFL if £ is an AFL.

Corollary 2. If £ is a full AFL, then 5(£) = o(£) = &(£) = 4(£) and 3(£) 4s

a full AFL.

Proof. By Remark 4 following the definition of substitution and by Corollary 3

of Theorem 4,2, r"xn(.!!) cn(.f.) and ﬁ}n(x:) is a full AFL for each n2l. Thus

s(8) = U 5 (&) =U §.(£) =5(£). Since each 5 _(£) < & +J_(.i!) for each n21,
a1 0 o1 D n n

3(£) is a full AFL. Clearly 5(£) < f(.i!). Since 5(£) 4is closed under
substitution 3(£) € &(£). Hemce 3(£) = 4(£). similarly o(£) = #(£).
Remark. It wns shown in [13] that 5(£) is & full AFL and g(£) = 3(::), ir
1s a full AFL.
Corollary 3. If £ is an e-free AFL, then 5(£) = ¥(L). If & is an AFL con-
taining (e}, then

AS) = & ey = d(e) = S¥(L)

and 5(£) is a full AFL.

Proof. lLet £ be an AFL, If £ is e~free, then on(-ﬁ) = r';‘n(.ﬁ) for each n, so
that 5(£) = ¢(£). By Corollary 1, o(£) = 4(£).
A A AA
Suppose £ canteins {c}. Clearly §(£) < 5 H(L) < 8(£) € 3MU(L). By
AA
33(g)= SR(£) and 4 H(L) 4s & full AFL. Thus
ey = ()

Corollary 2, n 9(1!)
5(2) = 4 (e)

A A

and 5 H(£) is a full AFL. It thus suffices to show that 5 #(£) € H(£). Now
A )
Weya LYo £

=L 3 £, since £ contains (¢} ( by Remark 5 following the definition
of substitution).
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Let ':i = £ for each i>1. Then for each n2l,

& A AL A A A A
< 5(L).

Hence o ﬁ(-!3) c 5(£).
Remark. It was shown in [13) that 4(£)= 4(£) if & !s an e=-free AFL.

Examples. (1) Counters. In [15] the notion of a l-counter acceptor is

generalized to that of a pda whose storage configurations are limited to the
¥*

bounded regular sets Zo Al

to a nested acceptor with n counters. Given n20, the family of langusges

*
An. This device 1s easily seen to be equivalent

N
defined by £(ﬁ1/\ g55 N ﬂn) ), each 0,

and £((M1)N) by ¥, m (15]. It is shown that "J-'n " is properly contained in
b4 y

a l=counter AFA, 1s denoted by S’Fn w
t4

o~ - or = A
P, w for cach n20. By Thearem L.2, 7n+.n,w gn,wc J'm,w 3n’wc ‘J-'m,w for
A

all n, mxil, By Theorenm 14,3, y”,w = j(&-’l’w).

(2) Linear context~free languages. A famlly that has recently been

studied from three different viewpoints is £ = 2(142), vhere liz is the family
of linear context-free languages., HNote that U 4 1s not an AFL since it is not
closed under concatenation. £ 1s called the "standard matching choice
languages" [21], the "quasie-rational languages" [20], and the "derivation-
bounded languages" [12]. Yntema and Nivat, independently, proved that £ is
properly contained in the context-free langusges. Theorem 4.3 allows us to

give = fairly simple acceptor realization for £.

i1s the smallest full AFL

3 *
et 7 4 < K (wewfw 1n (a,b])). F 1



2 Jamuary 1969 53 TM-738/050/00

containing ¥, [2, 15, 20]. Thus & = f(?w, l)‘ Let K be an infinite denumerable
set. Iet § be a new symbol and I’ an infinite set containing §. Let

I = (r-[!:])*. let (0,8), vith Q = (X,5,T,1,£,g), be the (single~tape) AFA
vhere £ and g are defined as follows (for all w in (r-(il)*, y in (T={§ ])+, and

Y,7 in T={2}):

(1) (e) = (¢} and g(wz) = g(Ewz) = 2.
(2) £(wvz) = wy, f(c,w) = \/) f(§va,,Y) = EwY, and f(gZ,e) a f(Z,e) = €.

(3) f(wz,e) = £(EwZ,€) = v for wfe.

Clearly (7,8) is a one=turn bounded pda AFA, that is, each D in & can make at
most one turn (i.e., the length of the storage configuration changes at most
once from increasing to decreasing) before returning to the storage configura-
tion € [10, 15]. It 15 shown in [15] that S«'w’l = £(8). It can also be shown,

= t = % 3 A
although not done here, that gw,l (@), let £l ‘fw,l and £ ., -fncr £1 for

each n=1. {Each £n is the family of quasi-rational languages of order n [20].)
By Thearen k.3, £ = £((M)") =U £ = 5(£(8)) = o(£*(8)) = £¥((n)). By

n
Thcorem 4,2, each .Cn is a full AFL. A result of Greibach [17] asserts that

if £, 45 not closed under substitution, then each £n is properly contained in

X

£ 4 8nd ,ﬁ(.cl) = (U z) = £ is properly contained in the family of context-free

languages.
(3) One-wny steck languages. Let (QS,OS) be the one-way stack AFA and

£S = L(ﬁs) [6, 5]. Thus £S is the one-wny stack languages. It was shown [16])
e Ap _ N
that £, i not closed under suostitution. Hence £Sf £5 L z((ns/\ 8.)") and

£(8.) #£((n)").
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The nested stack acceptors (nsa) of (1] are far more general devices
than the acceptors in (MS)N. Members of (/\ﬁs)N are essentially nsa which are
(a) nested (as defined in Section l~~there is at most ome nest of

stacks at any time.
(b) finitely nested--for each D there is an n such that no more than n

stacks are active at any time.

Both (a) and (b) restrict the power of nsa. Specifically, it is shown in [17]

that the nsa languages properly include 3(£S).
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APPENDIX

We consider here the proof of Lemma 4.3. In the process we shall need
some notation and ideas pertinent only to this appendix. In addition, we

shall need two preliminary lemmas.

We henceforth assume that 81 and 02 are glven multitape AFA and that

193 = 91/\ 92.

Let D = (Kl,zl,é,qo,F,U) be an acceptor in ﬁg and let

v o= (al, ooy Uy Byy eeey 8,)y with k, £21, each @, in @, and each BJ mae.

eevy Yg). For each G, § # G < G, write

/
v D,

ll
4

[
(Ba,%y (Ygr eves Yo ¥gs eoey YD (/5w (v ooy ¥ Ty eees 7))
if there exist ¥y) «..p Yy yi, cen, vé, Upy eeey Uy, u]'_, .esy u; such that

(1) (q')(ull voey Uy U{, ceey uz)) is iné(%&y(\'l) °"’Yk)Y]I_"")'Y£))5

(2) 73 = 1y (y3, u3) for each J, L= j < 4;
J

(3) (¥ys +oes W) 15 40 G;

(&) w, 1s in wllai(yi) and v, 1is in gai(yi) for each i, and 73 is in
gBJ(yS) for each J;

and  (5) y' #eory. #e for some Jor
Yo uo

Ior each 1>0 let Li'- be the relation on configurations defined by induction
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+
as follows: C }% C for each C and C }-% 1

¢’ if there exists C’ such that
; *
c I%;-C and C”I-G—C'. Let 'F be the transitive, reflexive extension of fz-.

Iet |— be the relation defined by

(q,o.w, (Yl: Y Yk: €y eooy €)) I",'(q'r":(§l: soey -Y-kyet seey €))

(Q:a"’; (er seey Yk’G, “-;)) {_' (q‘:") (;l’ seey ;k,e, seey €)).

* *
Let |7 be the reflexive transitive closure of | . Intuitively, |—

*
represents transitions in the ﬂl-pa.rt of D and I'E-in the # 2-pa.rt of D. Since

D is nested, if Cl— C’, then either C}—C’ or c}a;) c’ but not both. Note that

transitions (p,a,(yl, ey Vi € een e))[—(q',e;(yl, cers Vs €5 oony €))
occur as }-7- and not as I-a-

D is said to be in factored form (with factor function h) if h is a

function from K, into & = (G/G < G];] such that

1
*

(1) if (QO)VJ(G: EXP) €))|“ (q’ey(yl’ EXS) Yk: Y]'_) soey Yé)) then

h(q) < [(yl, e yk)/\(i in gai(yi) for each 1}.
m " “

(2) 1f w2l and (W, (¥ys «ovs Vio¥ys over VG (6, (yyy cons¥¥ seeesvy))s

then h(p) = h(q) and
N 4 " “

(way(yl: veey Nps¥qs eees Yﬁ))lM)(%ey(yl: ceey Ypr¥ys cees Yz))-

The following two facts hold whenever D 1s in factored form with factor
function h:

*
(1) 1f (qo,w,(e, ceey €)) (q,e,(yl, . F5 5 yk,y]'-, vo oy ya) and there
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exists J such that ys # ¢, then h(q) # . (For there exists a configuration
0
C and m2l such that

(agr¥ (€5 weey NP C ACTICTRE VT R AN

Hence C ‘Egﬂh(q) (q_,e,(yl, vees Vi yi, e y!'l)). By definition of e 5%
ey 8.)

(2) 1f ¢y f-E— Ci4y for 1 <1< m, where each
Oy = (Pyovys(Vys eves ¥¥yys eoes ¥yy)), then § £ h(p;) =h(py), L€ 15m,

m=1
< < * L4
and C, }T(pl) Cy4q for each i<m. In particular, C, I-E-(pl) m

D is sald to te in restricted factored form if it is in factored form

anl 1f w # ¢ whenever m>1 and there exists & G such that

y, (16)

1M
(wa’(yl’ o0y yk,G, evey 6))}3' (q',G,(yl, RN ] }’1:, F., seey e)

To prove Lemma 4,3, we shall show that given D in ﬂg, (a) there exists
an equivalent device in ﬂg in restricted factored form, and (b) if D is in
restrictel factored form (and is quasi-realtime), then L{D) is in £(£¥)a £(0g)

tyaN toall
(£5(])> £5(83)).

lerma A, Given D in SN, there exists D’ in 0§ such that

(a) D' is in factored form,
(v) 1) = KUD"),

and (¢) D’ 1s quasi-realtime if D is quasi-realtime.

G‘G)From the definition of 'E’ m2,
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Proof. Let xi =KX ) x (1,2). Let D’ = (x{,r.l,a ',(q°,¢,l),F x{g)x{1}, v),

vhere 8/ 1s defined as follows (for arbitrary p in Ky & 4n Z._l_U[e], end G in ¥):
(1) ((P)¢11): (l(alin)’ seey l(athk)’ l(Bl,G), seey l(Bpe)) is in

5’((P1C'32);€:(Yl’ ce0s Y€ ceey€)) for all GFP and (Yly veey Yk) in G.

(2) ((p,GUl (Y500 ¥ )5 1) (May,¥y)s ooy Uay,vy), 2UByse), ooy
1(B,s€))) 1s 4n 6'((p,G,1),e,(y1, voes Yys€s sosy €)) for each(yy, eees Yy)
in G ~G.

(3) If (q,(ul, oo bp uk,u]'_, boidig “E)) is in 6(p,a.,(yl, 30 o) yk,e,...,e))

and uso 1s not in *BJ (¢) for some J , then ((,G,2), (¥, ..y WoBTy oo, uy))
o

(h) If (q’(ul, ceey ul{’u]'.’ seey uz)) is in 6(p’a’(yl’"°’yk’y.{’”"Y;))’

(yl, ceey Yk’YJ'.’ ceoy Yz) in GD’ and for some ‘jo’ either u,

j is not in ¢

o

(e)
BJOG

or Y';o?l €, then ((q,G,2),(u1, seey uk’ui’ voey uz)) is in 6'((1’96’2))3':

(yl, iuih Yk’yi’ o y;‘)) for all G containing (Yl, S0 vk).

(5) 1 (%(1’1’ EXY) Vk)“i) seey uz)) is ma(P)a)(er EXY) Yk.ve.v'"’e))’

(Y9 +o+s Yjo€ +evp €) in G and u3 is in wBJ(e) for all J, 1L < J < £, then

((q,¢,l), (ult soey uk’ul" seey uz)) is in 5'((P’¢;l): a,
(yl, ey Vo€ eoes €)).

Obviously D’ is in ng. Let h be the function defined by h((p,G,1)) = G

for all p inK,, G in¥, and i in {1,2). By inspection (since G = G];,), p’

1
is in factored form with factor function h, i.e., D’ satisfies (a).
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Consider (b). D’ enters a state (p,G,2) if and only if D has a I'E'

transition. Type 3 and type 4 rules imitate }E-tre.nsitions, and type 5 rules

imitate f—' transitions In D, Since D is nested, every transition has an

assoclated I'E or IT transition. When the 0 _-tapes are €, a type 1 rule can

2
be used to go from a state (p,G,2), where h((p,G,1))= G#¥, to a state (p,f,1)
and then enter the ‘l-pa.rt of the ecceptor. Type 2 rules represent the guess

that D executes & |3 transition. Once h((p,G,1))/, D’ ultimately blocks or
else executes (by a type 3 rule) ut least ome I'-G transition. Thus I{D) = L(D’).

Consider (c¢). If #(Gl;) =n, then D’ has at most n+2 consecutive e-moves
for each c-move of D, Thus D’ is quasi~realtime if D is qua.si-reaitime.

N
3

(a) D" is in restricted factored form,

(b) 1(p') = KD),

and (¢) D" is quasi-realtime if D is quasi-realtime.

is in factored form, then there exists D’ in ON such that

Iemma B If D in d 3

Proof. Let D be in factored form with factor function h. Since

(p,e,(xl, ooy K€ eeny €)) %(q,e,(xl, ooy Xip€) eeey €)), m=1, implias

@ # n(p) = h(q) and (2,6, ()5 o00y X305 oeey €)) %(q,e,(xl,...,xk,e,...,e)),
we need only consider such transitions with G = h(p) = h(q). ILet S be the set
of all (p,q) in K.X K, vhere p#q and @ # h(p) = h(q), such that there exist

1
Yo cees Y satisfying

*
(ple)(Yl’ Rl ) YkJG) L) e)) m (%G,(Yl, eoey Yk,e, seey G)).
Let Ky = KU(Kx (,U(e})). ILet D" = (XI,Z,6",q,F",v), where F* = FUFx(e])

and 6” 1s defined as follows:

(1) (q’(ul) soey uk:u]l.: ooy u;’)) is in5”(p,8-,('Yl, e sy kaey ceey e))
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if (9.0“1: vesy ukru;_,o eeey “2)) is in 6(P’a)(Yl: voey Yk)G; veey e)): with

y
*
[By (1), the }7 transitions of D appear in D”.]

u’ in ¥, (€) for all J.
P

(2) (@ (2oy,y¥q)s «oes U,y ), 1By eE), coey UByel) 18 in
6'(p,e,(yl, ceey V1€ ooy €)) for all (p,q) in S and all (Yl, Sesh Yk) in h(p).
[Since pfy, the e-move in (2) replaces at least two e¢-moves in D, For if
(2r&s(¥ys <evs Y€ ooy e))}% (96, (¥ys wees Fpr€s weoy €)) for pfq, then
by definition of }-G- at least two moves are needed. ]

(3) £ (a(uy, «-o) u.k,ui, eeey ug)) 1s in 6(p,8,(Yy) coos Y€ eoes €))

w:lth(vl, Aty Yk) in h(p) = h(q) and u3° not in *‘33 (e) for some Jo?
o

then

(@ ((ae),(u, ..., uk,ui, veey W) 18 1n 8"(s8y(Yys oves Yyr€seees€))
if a 18 in L.

(8) ((ayd),(uys «ees u.k,u{, eeey uy)) 48 4n 8"(p,b(Yys «.o) Yys€s 00 0s€))
foreachbin}:lifa=e.
[By (3), a sequence of }G— moves in D” starts with a nonee input, namely,
either the input to D (3x), or a guess as to the eventual non-¢ input symbcl

to be read by D (38).]

(h) If (q’(ul: ceey uk’u.l'.’ eeay u;‘)) is inG(P’ay(Yly-H:'Yk;'Yi:"-’Y):)).-
with YS # € for some J, end (yl, 533 yk) in h(p) = h(q), then
(o]
(o) ((‘l’e):(ul: "':“k:ull.: veey u;,)) is in 6’((P:€):a:(Yly°":Yk;
Y]'_’ seey Y;))-
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(8) ((qr€)y(uyy veey wyuly coer uy)) 1s dn 67°((py8),€,(Yys +ves Yo
Yis eoes Yy)) if a is in £

(v) ((@b),(u, «oes wous, «ovy ug)) 1s dn 87((pyb),e(Yyy +oey Yo
yi, biwj Y;,)) for all b in L 1f s=c.

[By (4), D" can eater no state (g,e) until the guess as %o the non-¢ input of
D has been verified. If D" enters a configuration ((q,a),w,(yl,...,yk,e,...,e))

with afe, then D" blocks since it has traced out a computation on e=-input

*
handled by a type 2 rule. Otherwise,a 'F' transition is unchanged. ]

(5) (P’(l(aly\’l)’ XXY) 1(an:Yn):1(Bl:€)) YY) l(Bn:e))) is in
5”((p,e),e,(y1, ooy Ypr€s ooy €)) for each p in K, and (Yl, ey Yk) in n(p).
[After tracing ai—;- computation on non-¢ imput, D* returns to a K, -state and

* *
imitates either }-,— or }E transitions. ]

Since only type 5 rules add e€=-rules not similatling e=-rules in D and

these cannot be applied twice in a row, D’ is quasi-realtime if D is.

The only transitions of D not represented in D’ are
*
(D) (Yys oves Vo€ eoey e))}ﬁ-(p) (q_,e,(yl, ooy Vo€ eeey €)) and these are
covered by (2). The only new transitions are (2) and (5). Thus L{D)= L{D").
It h be the function on K’J’_ defined by h(p) = h((p,a)) = h(p) for each

p in K, and a in r.lu[e]. Then D’ is in factored form with factor function h,

1
* v
Now IF computations in D’ start with e type 3 rule. Since all type 3 rules

have non-¢ input, D” is in restricted factored form.

We are now ready for Lemma k4.3,
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Lema 1.3, £¥(8]) = £%a])o £%])

l
by 7(a) = {a) for each a in }:1. Since the AFL .Bt(ﬂg) contains each c-free

N N N
and 5(03) s 3(91) g 3(92).
N
Proof. Let D = (Kl,Z‘._L,G,qo,F,v) be in 93. Suppose each @ in v is in Q,.
Then D 1s in & end I{D) = r(1{D)), where 7 is the e~free substitution defined

regular set and thus each {a), each t(a) is in -Bt(ﬂg), vhence the result.

N
2

t(a) = I{D) and the regular set {a)} is in £t(£§_‘). Thus assume that

Stndlarly, if ell @ in v are in G, then D is ind, and I(D) = v({a}), whence
By Lemmas A and B we may assume that D 1s in restricted factored form with
factor function h. We shall say that G describes (yl, S yk) ifGces
((Y]_,...,Yk)/vi in gai(yi) for each 1)}. We shall say (p,(yl, v o yk)) is

*
accessible if (qo,w,(e, ceey €))— (p,e,(yl, bl yk,y]'_, Fored yZ)) for some
w and some (y;_, coey y;‘). Without loss of generality we may assume that if p

1s in K;, then there exists (yl, eees ¥,) such that (p, (yl, o yk)) is

accessible.

Since D is in factored form, if

m i 4
(P;v)(yl) IEXY) yk)}’i; XXY) y;))'? (‘beﬁ(yl) XXY) Yk;Y;L’ ceoy Y},)) for
some m2l and if (p,(yl, delely yk)) is accessible, then the following hold:

(1) h(p) = h(q) end h(p) descrives (y,, «.v) ¥ ).

(2) (RyWy(yys eves Fa¥gs ooy y;))l%n(p)(q,e,(yl,--o,yk,Y’i,---,y}'z))-
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(3) If h(p) descrives (¥y, ..., '37:__), then
(0% (T oo0s Tip¥s o0 TETpy (W€ (T ooes Fp¥yy oes ¥R
For each (p,q) in KjX K, with h(p) = h(o)#d, let <p,q> be a new symbol
and let
Lp,q = o/ (oy ¥y (Yys woes Ms€s oees e))%(q,e,(yl, cery Nis€s eeey €))

for same m1 and some y), ..., yk].

(The condition m2l is aeeded for the case p=q since otherwise L might

trivially contain €.) Since D is in restricted factared form, Lp q is
$4

obviously e~free. ILet X = (s inK /n(s) = h(p)) and letD =
y - 1/h( ) (p) -

K
(pq Py’

ap‘propri.tte Sl’ 2,&, etC)o If (82’('(&, coey 1’1{"’]'.’ eeoy u;)) is in
8(8158,(Yys «ovy vk,'yi, eeey ¥g)), with h(s)) = n(s,) = h(p) and there exist

J, such that either udo:ls not in wad (v‘1 ) or yJ # €; then (se,(ul,...,uz))is in
(o]

r;{al, (Bys +oes By)), vhere 8 - is defined as follows (for all

Py

GP’q(sl,a,(yi, »53p Y;)).

Suppose h(p) = h(q)#¢ Obviously D, q 18 quasi-realtine if D is quasi-
realtime, If

(2w (¥gs eees ¥pr€s ooe) c))ﬁ;) (8156, (¥35 oee) yk,y]'_, )
and  (83,8,(¥ys oer ¥p¥3s eoos V) (S (Vyr woes Wp¥ys coer ¥

then h(p) = h(s;) = h(sa) and there exists J  such that either v/. #e or

o
y:; # €, so that

o
(sl,a,(y]'_, seey y;,)) ’3—(9251(3’;) vedy YZ))'
Pq



2 Jamuary 1969 N TM=738/050/00

’ [
Hence Ib’q‘-‘ L(Dp’q). On the other hand, suppose (sl,a,(yl, cees ¥y))

th_q (aa,e,(yi, eesy ¥3)). Then h(p) = h(sl) = h(sa), there exists
$4

(yl, seng yk) such that h(p) descrives (yl, Lith yk) (by (1)), and there exists

J, such that edther ys feor ys ¥ €. Thus
0 o

(Bl,a,(yl, veoy Yk’yl'.' soey Y‘;))"mp) (52:51(}'1: seoy Yk:Y;_: seey Y;))-

D SL so that I(D =L .,
- L( Py q) P9 L( /) q) Pyq

Let ).‘.2 be the set of all <p,g>. Let T be the substitution on Z‘.JU 22
defined by r(a) = {a) for each a in Z, and r(<p,>) = Lp z for each <p,¢>
4

in Z,. Then 7 is an e-free substitution by t(ﬂa), and if D is quasi-realtime

then v 1s an e=free substitution by St(ﬂa).

Now let D = (xcl,rlu Zo F,qo,F, (&g, +ee) @), vhere § 1s defined as
follows:

(%) (%(\"1’ soey “k)) is ina-(?)ay(Yl) soey Yk)) ir (9.9(“1.0 eoey Wy

u{, ...,u;‘)) is in 6(p,a,(yl, et Vpr€s eee €)) and us is in ¢_ (€) for all j.

B
J
(5) (‘1)(1(&1:\’1); soey 1(%’Yk))) is in F(P’<P;q>)(Yl) seey Yk)) for

all p,q such that h(p) = h(a)/ and (v,, ..., ¥

k) is in h(p).

Ir (p)a)(yll 000y yk))}'%'(%e)(ii soey .;k))’ with a in Zj_U[G}, then

(a) = (a) and (y8,(yy) coes Vo) «evy g lae, ¥y, .oy Vi€ eees €))e

Thus (q,(s"l, dlo=oj 'fk)) is accessible if (p,(yl,..., yk)):ls. If
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(P}b;(yl’ ooy yk))’% (Q.pe;(-y-l: soey ;k))’ wvith b inza’ then b = <p,q>, T(b)=

Lp’q, and (yl, A yk) = (yl, S yk). In addition, if w is in Lp,q and

h(p) describes (yl.; G yk), then

*
(P’w)(}’l’ veny yk)el seey e)) '?,h(p) (Q.,G’(Yly veoy Ykie) seey 6)).

(For if a transition in D halds for som: (y., .., ¥, ) described by h(p), it
1 k

holds for all such (yl, i yk).) From this it readily follows that
(D) = r(1(D)). Clearly D is in 8, and D 1s quasi-realtime if D is. Hence

I{D) is in .r.(ol) o 3(02), and if D is quasi-realtime then I{D) is in
t t
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